
OCPI 3.0-2
Functional Use Cases

https://github.com/ocpi & https://evroaming.org

document version review2, 2024-02-22

Table of Contents
Introduction . 3

General . 3
Terminology . 3
References . 4
Use Case Template . 5
UC: F01 - Example Use Case. 5

Fundamental data type definitions. 6
class . 6
enum. 6
OpenEnum type. 6
UnicodeString type . 6
AsciiString type . 7
CiAsciiString type . 7
int type . 8
decimal type . 8
URL type . 8
PartyID type . 8
DateTime type . 9
DisplayText class . 9

1. Registration . 10
1.1. Use Cases . 10

1.1.1. UC: 01.01 - Initial credentials exchange (manual) . 10
1.1.2. UC: 01.02 - Establish secure connection . 11
1.1.3. UC: 01.03 - Handshake OCPI connection parameters. 12
1.1.4. UC: 01.04 - Renew certificate. 14
1.1.5. UC: 01.05 - Terminate OCPI connection . 16
1.1.6. UC: 01.06 - Request supported OCPI versions . 17

1.2. Object types for Registration use cases. 18
1.2.1. ConnectionParametersRequest class. 18
1.2.2. ConnectionParametersResponse class . 19
1.2.3. CertificateRenewalRequest class . 19
1.2.4. OcpiVersions class . 20
1.2.5. OcpiVersion class. 20
1.2.6. RenewedCertificate class . 20

2. Request Addressing . 21
2.1. Note from the editor on changes from OCPI 2.2 . 21
2.2. Introduction . 22
2.3. Use Cases . 22

2.3.1. UC: 02.01 - Request Parties served by Platform. 22
2.3.2. UC: 02.02 - Make a request on behalf of a Party to a Party on another Platform. 23

2.4. Object types for Request Addressing use cases. 28
2.4.1. BusinessDetails class . 28
2.4.2. Image class. 28
2.4.3. ImageCategory enum . 29
2.4.4. InterfaceRole enum . 29

2.4.5. ModuleID OpenEnum . 30
2.4.6. OcpiResponse class . 30
2.4.7. OCPI response status codes . 31

2.4.7.1. 1xxx: Success . 32
2.4.7.2. 2xxx: Client errors. 32
2.4.7.3. 3xxx: Server errors . 32
2.4.7.4. 4xxx: Hub errors . 32
2.4.7.5. 5xxx: Subscription errors. 33
2.4.7.6. 6xxx: Platform Issued Object update errors. 33
2.4.7.7. 7xxx: Remote Procedure Call errors . 33

2.4.8. PartyRole class . 33
2.4.9. PlatformParty class . 34
2.4.10. PlatformParties class . 34
2.4.11. PointOfContact class. 34

3. Party Issued Objects . 35
3.1. Introduction . 35

3.1.1. Why such an abstract replication system? . 35
3.1.1.1. A reusable system. 35
3.1.1.2. More reliable . 35
3.1.1.3. More frugal . 36
3.1.1.4. More interoperable . 36
3.1.1.5. More stable . 36
3.1.1.6. Traceability of charge authorization . 36

3.1.2. Implementing OCPI 3.0’s Party Issued Object pub-sub . 36
3.1.2.1. How to store subscriptions . 37
3.1.2.2. When and what to send. 38
3.1.2.3. Data storage on the producer side . 39
3.1.2.4. Data storage on the consumer side . 40
3.1.2.5. Optimizing throughput with many HTTP requests . 40

3.2. Use Cases . 40
3.2.1. UC: 03.01 - Subscribe to Party Issued Objects of a certain Module of a certain Party 40
3.2.2. UC: 03.02 - Send a full update of a Party Issued Object to a Subscribed Platform. 42
3.2.3. UC: 03.03 - Retry an update of a Party Issued Object to a Subscribed Platform. 46
3.2.4. UC: 03.04 - Cancel a Subscription as the Platform receiving data. 48
3.2.5. UC: 03.05 - Cancel a Subscription as the Platform sending data. 50
3.2.6. UC: 03.06 - Check subscription state on sender side as the platform receiving data 51
3.2.7. UC: 03.07 - Renegotiate Subscription Parameters as the Platform receiving data . 53
3.2.8. UC: 03.08 - Renegotiate Subscription Parameters as the Platform sending data . 55
3.2.9. UC: 03.09 - Request immediate retry of all pending updates for a Subscription . 57
3.2.10. UC: 03.10 - Request full update of a certain Party Issued Object . 59
3.2.11. UC: 03.11 - Subscribe to Party Issued Objects of a certain Module of a certain Party as a Hub 61
3.2.12. UC: 03.12 - Subscribe to Party Issued Objects of a certain Module of a Hub . 63
3.2.13. UC: 03.13 - Subscribe to Party Issued Objects of a certain Module of a Hub as a Hub 65

3.3. Object types for Party Issued Objects use cases . 67
3.3.1. PartyIssuedObjectReference class . 67
3.3.2. PartyIssuedObjectUpdate class . 67
3.3.3. SubscriptionCancellation class . 68

3.3.4. SubscriptionCancellationReason enum . 68
3.3.5. SubscriptionParameterProposal class . 68
3.3.6. SubscriptionRenegotiationStatus enum . 69
3.3.7. SubscriptionRequest class . 69
3.3.8. SubscriptionResponse class. 70
3.3.9. SubscriptionState class . 70

4. Remote Procedure Calls . 71
4.1. Introduction . 71
4.2. Use Cases . 71

4.2.1. UC: 04.01 - Make a Remote Procedure Call on behalf of a Party to another Party on another Platform . . . 71
4.2.2. UC: 04.02 - Let a Hub find a receiver Party for a Remote Procedure Call. 73
4.2.3. UC: 04.03 - Make a Remote Procedure Call Allowing Asynchronous Responses . 75

4.3. Object types for Remote Procedure Calls Use Cases. 77
4.3.1. AsyncRequest class . 77
4.3.2. AsyncResponse class. 77
4.3.3. AsyncResultType enum . 78
4.3.4. ImmediateResponseToAsyncRequest enum. 78

5. Locations. 79
5.1. Changes from OCPI 2.2.1. 79
5.2. Replicating Location objects . 79

5.2.1. UC: 05.01 - Replicate Location objects from one Party to another Party . 79
5.2.2. Example Location objects . 81

5.2.2.1. Example public Location . 81
5.2.2.2. Example destination Location. 83
5.2.2.3. Example destination Locations not published, but paid guest usage possible . 85
5.2.2.4. Example Location with limited visibility . 86
5.2.2.5. Example private Charging Station with eMSP app control . 87
5.2.2.6. Example Charging Station in a parking garage with opening hours . 88

5.3. Remote Procedure Calls on Location objects . 90
5.3.1. UC: 05.02 - Reserve an EVSE at a Location . 90
5.3.2. UC: 05.03 - Cancel a Reservation as an eMSP. 94
5.3.3. UC: 05.04 - Cancel a Reservation as a CPO . 96
5.3.4. UC: 05.06 - Unlock a Connector . 97
5.3.5. UC: 05.07 - Reset an EVSE . 99

5.4. Object type definitions . 102
5.4.1. AdditionalGeoLocation class . 102
5.4.2. Address class . 103
5.4.3. CancelReservationRequest class. 103
5.4.4. Capability enum . 103
5.4.5. ChargingStation class . 105
5.4.6. ChargingStationCommandError class . 105
5.4.7. ChargingStationCommandStatus enum . 106
5.4.8. Connector class . 106
5.4.9. ConnectorCapability OpenEnum . 107
5.4.10. ConnectorFormat enum . 107
5.4.11. ConnectorType OpenEnum . 108
5.4.12. Common EV Charging Connector Types. 108

5.4.13. Domestic and Industrial Connector Types . 108
5.4.14. Legacy and Novelty Connector Types . 109
5.4.15. EnergyMix class . 109

5.4.15.1. Examples . 110
5.4.16. EnergySource class . 110
5.4.17. EnergySourceCategory enum . 110
5.4.18. EnvironmentalImpact class . 111
5.4.19. EnvironmentalImpactCategory enum . 111
5.4.20. EVSE class . 111
5.4.21. EvsePosition enum . 112
5.4.22. ExceptionalPeriod class . 113
5.4.23. Facility enum . 113
5.4.24. GeoLocation class . 114
5.4.25. Hours class . 114

5.4.25.1. Example: 24/7 open with exceptional closing.. 115
5.4.25.2. Example: Opening Hours with exceptional closing. 115
5.4.25.3. Example: Opening Hours with exceptional opening. 116

5.4.26. Parking class . 117
5.4.27. ParkingDirection enum . 118
5.4.28. ParkingRestriction class . 119
5.4.29. ParkingRestrictionGroup OpenEnum . 119
5.4.30. ParkingType enum . 119
5.4.31. Location class. 120
5.4.32. LocationMaxPower class . 121
5.4.33. PowerType enum. 121
5.4.34. PresenceStatus enum . 122
5.4.35. PublishTokenType class . 122
5.4.36. RegularHours class . 122

5.4.36.1. Handling midnight . 123
5.4.36.2. Example with exceptional opening hours . 123

5.4.37. ReservationStatus enum . 124
5.4.38. ReserveNowRequest class . 125
5.4.39. ReservationError class . 125
5.4.40. ResetEvseRequest class . 125
5.4.41. LocationService enum . 125
5.4.42. Status enum . 126
5.4.43. StatusSchedule class. 126
5.4.44. UnlockConnectorRequest class. 126
5.4.45. VehicleType enum . 127

6. EVSE Status. 128
6.1. Replicating EVSE Status objects . 128

6.1.1. UC: 06.01 - Replicate EVSE status objects from one Party to another Party . 128
6.2. Remote Procedure Calls on EVSE Status objects . 129
6.3. Object type definitions . 129

6.3.1. EvseStatus class . 129
7. Sessions . 130

7.1. Changes from OCPI 2.2.1. 130

7.2. Replicating Session objects . 131
7.2.1. UC: 07.01 - Replicate Session objects from one Party to another Party. 131

7.3. Remote Procedure Calls on Session Objects . 132
7.3.1. UC: 07.02 - Start a Session . 132
7.3.2. UC: 07.03 - Stop a Session . 134
7.3.3. UC: 07.04 - Change Charging Preferences . 136
7.3.4. UC: 07.05 - Notify Session receiver of the active Charging Profile . 138
7.3.5. UC: 07.06 - Send Message for Driver About Session to eMSP . 139
7.3.6. UC: 07.07 - Send Message for Driver About Session to CPO . 141

7.4. Data types . 142
7.4.1. ChargingPreferences class . 142
7.4.2. ChargingPreferencesResponse enum . 143
7.4.3. NotifyActiveChargingProfileRequest class . 143
7.4.4. SendDriverMessageRequest class . 143
7.4.5. Session class . 143

7.4.5.1. Examples . 145
7.4.6. ProfileType enum . 147
7.4.7. SessionCommandError class . 147
7.4.8. SessionCommandStatus enum . 147
7.4.9. SessionConnector class . 147
7.4.10. SessionStatus enum . 148
7.4.11. StartSession class . 148
7.4.12. StopSessionRequest class . 149

8. CDRs . 150
8.1. Introduction . 150

8.1.1. Credit CDRs . 150
8.1.2. Replication model . 150
8.1.3. Changes from OCPI 2.2.1 . 150

8.2. Replicating CDR objects . 151
8.2.1. UC: 08.01 - Replicate CDR objects from one Party to another Party. 151
8.2.2. UC: 08.02 - Send a Credit CDR. 152
8.2.3. Example of a CDR . 154

8.3. Remote Procedure Calls on CDR Objects . 155
8.3.1. UC: 08.03 - Dispute a CDR . 155

8.4. Other CDRs use cases. 156
8.4.1. UC: 08.04 - Check CDR price . 157

8.5. Data types . 159
8.5.1. AuthMethod enum . 159
8.5.2. CDR class . 159
8.5.3. CdrConnector class . 162
8.5.4. CdrDimension class . 163
8.5.5. CdrDimensionType enum. 163
8.5.6. CdrLocation class . 164
8.5.7. CdrToken class. 164
8.5.8. ChargingPeriod class . 165
8.5.9. DisputeCdrRequest class . 165
8.5.10. DisputeCdrResponse class. 165

8.5.11. SignedData class . 165
8.5.12. SignedValue class . 166

9. Tariffs . 167
9.1. Changes from OCPI 2.2.1. 167
9.2. A note on "Parking time", "Loitering fees", "Idle penalties", et cetera . 167
9.3. Replicating Tariff objects . 168

9.3.1. UC: 09.01 - Replicate Tariff objects from one Party to another Party . 168
9.3.2. Examples of Tariff objects . 169

9.3.2.1. Simple Tariff example € 0.25 per kWh. 169
9.3.2.2. Simple Tariff example with British Columbia taxes. 170
9.3.2.3. Tariff example € 0.25 per kWh + start fee. 171
9.3.2.4. Tariff example € 0.25 per kWh + minimum price . 171
9.3.2.5. Tariff example € 0.25 per kWh + loitering fee + start fee . 172
9.3.2.6. Tariff example € 0.25 per kWh + start fee + max price . 173
9.3.2.7. Simple Tariff example € 2 per hour . 174
9.3.2.8. Simple Tariff example € 3 per hour, € 5 per hour loitering . 174
9.3.2.9. Simple Tariff example with multiple languages . 175
9.3.2.10. Tariff example not possible with OCPI: differentiation by payment method . 176
9.3.2.11. Simple Tariff example with alternative URL . 176
9.3.2.12. Complex Tariff example . 178
9.3.2.13. Free of Charge Tariff example . 180
9.3.2.14. First hour free energy example . 181
9.3.2.15. Tariff example with reservation price . 182
9.3.2.16. Tariff example with reservation price and fee . 184
9.3.2.17. Tariff example with reservation price and expire fee. 185
9.3.2.18. Tariff example with reservation time and expire time . 187

9.4. Remote Procedure Calls on Tariff objects . 189
9.5. Object type definitions . 189

9.5.1. DayOfWeek enum . 189
9.5.2. Price class . 189
9.5.3. PriceComponent class . 189
9.5.4. ReservationRestrictionType enum . 189
9.5.5. Tariff class. 190
9.5.6. TariffElement class . 192
9.5.7. TariffDimensionType enum . 193
9.5.8. TariffRestrictions class . 193

9.5.8.1. Example: Tariff with max_power Tariff Restrictions . 195
9.5.8.2. Example: Tariff with max_duration Tariff Restrictions . 196

9.5.9. TaxAmount class . 197
9.5.10. TaxPercentage class . 197

10. Tariff Associations. 198
10.1. Changes from OCPI 2.2.1. 198
10.2. Replicating Tariff Associations objects . 198

10.2.1. UC: 10.01 - Replicate Tariff Association objects from one Party to another Party . 198
10.3. Remote Procedure Calls on Tariff Association objects . 199
10.4. Other Tariff Associations use cases . 199

10.4.1. UC: 10.02 - Cancel a Tariff Association . 200

10.5. Object type definitions . 200
10.5.1. ConnectorReference class . 200
10.5.2. TariffAssociation class . 201
10.5.3. TariffAudience enum . 201

11. Tokens. 202
11.1. Changes from OCPI 2.2.1. 202
11.2. Replicating Token objects . 203

11.2.1. UC: 11.01 - Replicate Token objects from one Party to another Party . 203
11.2.2. Example token objects. 204

11.2.2.1. Example APP_USER token . 204
11.2.2.2. Example RFID token. 204
11.2.2.3. Example EMAID token . 205

11.3. Remote Procedure Calls on Token Objects. 205
11.3.1. UC: 11.02 - Ask for real-time charge authorization . 205

11.4. Object type definitions . 207
11.4.1. AllowedType enum . 207
11.4.2. AuthorizeRequest class . 207
11.4.3. AuthorizeResponse class . 208
11.4.4. EnergyContract class . 209
11.4.5. Token class . 210
11.4.6. TokenType OpenEnum . 211
11.4.7. WhitelistType enum . 211

12. Invoice Reconciliation. 213
12.1. Changes from OCPI 2.2.1. 213
12.2. High-level description . 213
12.3. Replicating Invoice Reconciliation Record objects. 215

12.3.1. UC: 12.01 - Replicate Invoice Reconciliation objects from one Party to another Party 215
12.4. Remote Procedure Calls on Invoice Reconciliation Record objects . 216
12.5. Object type definitions . 216

12.5.1. InvoiceReconciliationRecord class . 216
13. Power Regulation . 218

13.1. A note for the reviewers . 219
13.2. Smart Charging Topologies. 220

13.2.1. The eMSP generates Charging Profiles. 220
13.2.2. The eMSP delegated Smart Charging to SCSP. 220
13.2.3. The CPO delegated Smart Charging to SCSP. 221

13.3. Changes from OCPI 2.2.1. 221
13.4. Replicating MeterSample objects. 222

13.4.1. UC: 13.01 - Replicate MeterSample objects from one Party to another Party . 222
13.5. Remote Procedure Calls for Power Regulation . 223

13.5.1. UC: 13.02 - Set a Charging Profile on a grouping of EVSEs . 223
13.5.2. UC: 13.03 - Set a Charging Profile on a Charging Session . 225
13.5.3. UC: 13.04 - Set Default Charging Profile . 227
13.5.4. UC: 13.05 - Get Active Charging Profile . 230
13.5.5. UC: 13.06 - Clear Charging Profile . 232

13.6. Data types . 233
13.6.1. ActiveChargingProfile class . 233

13.6.2. ChargingRateUnit enum . 234
13.6.3. Unit OpenEnum . 234
13.6.4. ChargingProfile class . 234
13.6.5. ChargingProfilePeriod class . 235
13.6.6. ComponentLevel enum . 235
13.6.7. ComponentLocation OpenEnum . 236
13.6.8. GetActiveChargingProfileRequest class . 236
13.6.9. Measurand OpenEnum . 236
13.6.10. MeterReading class . 236
13.6.11. MeterSample class . 237
13.6.12. Phase enum . 237
13.6.13. RegulationError enum . 238
13.6.14. SetChargingProfileOnEvsesRequest class. 238
13.6.15. SetChargingProfileOnSessionRequest class . 238
13.6.16. ClearChargingProfileRequest class . 238

Copyright © 2014 – 2024 EVRoaming Foundation. All rights reserved.

This document is made available under the Creative Commons Attribution- NoDerivatives 4.0 International Public License

(https://creativecommons.org/licenses/by-nd/4.0/legalcode).

EVRoaming Foundation

OCPI is developed and managed by the EVRoaming Foundation. The EVRoaming Foundation is a contributor based
organisation. Everyone can join the EVRoaming Foundation via https://www.evroaming.org

The EVRoaming Foundation strives to keep OCPI as free from IPR as possible. If you want to contribute by adding new
functionality/features, you are required to send us the signed Contributor Agreement (CA) document before
contributing. To get the CA, ask for it by send an e-mail to: info@evroaming.org.

1

https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://www.evroaming.org
mailto:info@evroaming.org

Version History

Version Date Author Description

3.0-review2 2024-03-12 Michel Bayings
EVRoaming
Foundation

Updated introductory texts.

3.0-review1 2024-02-22 Christopher Brown
Stations-e
Daniele Orler
Plugsurfing
Gianfranco de
Fabritiis
DCS
Kor Meelker
Chargepoint Inc.
Matthieu Loos
FLO EV Charging
Pieter Goetschalckx
Optimile
Reinier Lamers
ihomer
Robert de Leeuw
EVA Global
Rudolph Froger
TandemDrive
Thomas Fousse
Gireve

Adding Registration, Request Addressing, Party Issued
Objects, and Remote Procedure Calls use cases.

Numerous changes to the Functional Modules as noted in
the introduction text to each Functional Module.

3.0 Draft 0 21-06-2019 Robert de Leeuw
ihomer

First documentation structure for OCPI 3.0, moved all
existing documentation to the new documents

Document revisions There can be multiple documentation revisions of the same version of the OCPI protocol.

The newer documentation revisions of the same protocol version can never change the content of the messages: no
new fields or renaming of fields. A new revision can only clarify/fix texts/descriptions and fix typos etc.

These documentation revisions (not the first) will be named: d2, d3, d4 etc.

Examples:

• OCPI 2.1.1 is a different protocol version of OCPI than OCPI 2.1.

• OCPI 2.0-d2 is the same protocol version as OCPI 2.0, but a newer documentation revision: same protocol, newer
documentation.

2

Introduction
This document contains the OCPI 3.0-2 functional use cases. Each functional use case describes how a certain function
should be performed by an OCPI platform.

General

Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in [RFC2119] and [RFC8174] when, and only when, they appear in all capitals, as shown here.

In the Functional Use Cases we will use the following terms in addition to those defined in the Business Use Cases.

Term Description

Charge Token An identifier of an authorization given by an MSP to a driver or group of drivers to
charge at one or more EVSEs belonging to one or more CPOs with the MSP taking
responsibility of compensating the CPO for the resulting charge sessions.

Party Issued Object A record of information about an entity managed by an OCPI Party, which is replicated
into computer systems of other OCPI parties. Only the party managing the
represented entity is to make changes to the record, and the replicas are only updated
when replicating changes to the original record.

Hosting An OCPI Platform is said to host an OCPI Party when it is able to offer Party Issued
Objects or answer remote procedure calls on behalf of that Party, to at least one other
OCPI Platform connected to this first Platform.

Serving An OCPI Platform is said to serve one OCPI Party X to another OCPI Party Y when it is
able and willing to offer Party Issued Objects or answer remote procedure calls on
behalf of X to Y. Note that the set of Party Issued Objects and Remote Procedure Calls
that the Platform offers to Platform Y on behalf of Platform X does not have to be the
same set that it offers to other OCPI Parties.

OCPI Base URL A base URL from which all URLs to a Platform’s OCPI endpoints can be derived by
appending path segments and/or query parameters

OCPI Connection The conceptual connection between two Platforms (in contrast with the technical HTTP
connections used to actually exchange data). The Platforms have agreed that they will
exchange information over OCPI. Platforms must keep some data about each OCPI
Connection, for example for identification, authentication and to know what roles the
other side has.

OCPI Party An actor sharing data or requesting operations via OCPI. Parties are identified by a
Party ID as defined in ISO 15118.

Platform Identity A string identifying an OCPI Platform. When communicating using OCPI, Platforms use
each other’s Platform Identifier to identify the Platform that they are communicating
with.

3

NOTE

The definition of Charge Token is deliberately abstract to include different kinds of Charge Tokens in
practical use. Charge Tokens may have a physical form or they may purely be bits of information
stored in computer systems. An RFID card issued by an MSP to operate Charging Stations is an
example of a Charge Token with a physical form. Single-use authorization identifiers for Charging
Sessions started by a Driver with a mobile phone application are examples of Charge Tokens without
a physical form. Another example of what a Charge Token could be would be a bit of identifying
information stored in the EV itself in order to enable a "Plug and Charge" experience for the Driver.

References

In the Functional Use Cases we will refer to these documents for normative descriptions of how OCPI platforms
should behave:

Reference
identifier

Title URL

CSR PKCS #10: Certification Request Syntax
Specification, Version 1.7

https://datatracker.ietf.org/doc/html/rfc2986

HTTPMSG HTTP/1.1: Message Syntax and Routing https://datatracker.ietf.org/doc/html/rfc7230

JSON ECMA-404 The JSON data interchange syntax https://www.ecma-international.org/
publications-and-standards/standards/ecma-
404/

JSONSCHEMA JSON Schema: A Media Type for Describing
JSON Documents

https://datatracker.ietf.org/doc/html/draft-
bhutton-json-schema-01

TLSGUID IT Security Guidelines for Transport Layer
Security (TLS), version 2.1

https://english.ncsc.nl/publications/
publications/2021/january/19/it-security-
guidelines-for-transport-layer-security-2.1

PEM Textual Encodings of PKIX, PKCS, and CMS
Structures

https://datatracker.ietf.org/doc/html/rfc7468

RFC2119 Key words for use in RFCs to Indicate
Requirement Levels

https://datatracker.ietf.org/doc/html/rfc2119

RFC3339 Date and Time on the Internet: Timestamps https://datatracker.ietf.org/doc/html/rfc3339/

RFC6848 Deprecating the "X-" Prefix and Similar
Constructs in Application Protocols

https://datatracker.ietf.org/doc/html/rfc6648

RFC8174 Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words

https://datatracker.ietf.org/doc/html/rfc8174

TZVAL Time Zone Database http://www.iana.org/time-zones

URI Uniform Resource Identifier (URI): Generic
Syntax

https://datatracker.ietf.org/doc/html/rfc3986

X509 Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL)
Profile

https://datatracker.ietf.org/doc/html/rfc5280

4

https://datatracker.ietf.org/doc/html/rfc2986
https://datatracker.ietf.org/doc/html/rfc7230
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01
https://english.ncsc.nl/publications/publications/2021/january/19/it-security-guidelines-for-transport-layer-security-2.1
https://english.ncsc.nl/publications/publications/2021/january/19/it-security-guidelines-for-transport-layer-security-2.1
https://english.ncsc.nl/publications/publications/2021/january/19/it-security-guidelines-for-transport-layer-security-2.1
https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3339/
https://datatracker.ietf.org/doc/html/rfc6648
https://datatracker.ietf.org/doc/html/rfc8174
http://www.iana.org/time-zones
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5280

Use Case Template

This section contains the proposed Use Case template for OCPI 3.0. The number and name of the use case are not
part of the table, but are in the header before the use case table.

UC: F01 - Example Use Case

Objective(s) 1. Objective 1 (optionally numbered)
2. Objective 2 (but might also just contain a text.)
3. Objective 3

Description This contains a short description of the use case in words.

Actors the actors involved in this use case: CPO, eMSP, Hub etc.

Flow 1. Step 1
2. Step 2
3. Step 3
4. Step 4
5. Step 5

Preconditions Contains the pre-condition of the use case.

Postconditions Contains the post-condition of the use case.

Error handling Contains the error handling if applicable, error handling is not part of the requirements

Remark(s) space for adding remarks to a use case.

eMSP CPO

Command(UNLOCK_CONNECTOR, location_id=1234, evse_uid=1234, connector=1)

status_code = 2003, data: {CommandResponse { result = REJECTED }}

2003 = Unknown Location

Figure 1. Sequence Diagram: Example Use Case

Table 1. UC: F01 Requirements

ID Precondition Requirement

R.F01.0
1

Pre condition of first requirement, if applicable The first requirement itself.

R.F01.0
2

Pre condition of second requirement, if
applicable

The second requirement itself.

5

Fundamental data type definitions
This chapter introduces fundamental data types that are used to define all data the types that are used in later
chapters of this document.

class
When a data type is defined as a "class" in the OCPI specification, we mean a type whose possible values are sets of
zero or more pairs of a string and another value. The string is known as a "key", "field name", or "property", and the
value associated with the key is known as a field value. For each class type, the specification lists which strings are
required and allowed to occur as field names in values of that type, and what the types of the field values of these
fields should be.

In the serialized JSON form of OCPI messages, class values are serialized as JSON objects.

enum
When a data type is defined as an "enum" in the OCPI specification, we mean a type whose possible values are a finite
number of strings.

This type is used for class fields where it is clear that there is only a finite set of possible values that is completely
known at the time of writing of the specification. An example of a place where this is used is a class field whose
possible values are the days of the week.

In the serialized JSON form of OCPI messages, enum values are serialized as JSON strings.

OpenEnum type
The OpenEnum type is meant for class fields for which the set of all possible values is not known at the time of writing
of the specification, but where there are a finite number of known possible values. In this case we want to specify how
OCPI implementers can use the known possible values, but also leave room for them to use other values.

This is used for example for connector types, where all implementers should use the same value to identify a widely
used connector type like the Type 2 "Mennekes" plug, but where there should also be room for implementers to
name new or custom plug types that were not taken into account by OCPI’s authors.

In the serialized JSON form of OCPI messages, OpenEnum values are serialized as JSON strings.

When naming new OpenEnum values, OCPI implementers SHOULD follow the "Recommendations for Creators of
New Parameters" found in IETF RFC 6848 ([RFC6848]).

UnicodeString type
A character string to be interpreted by human actors. OCPI poses no restrictions on the values of fields of this type
beyond that they be valid JSON strings.

NOTE
This means that implementations must be prepared to receive arbitrary Unicode characters in fields
with this type, including things that developers may not think of as text, like control characters,

6

emoji and writing systems that are not their own.

When a size restriction is given with this type, it restricts the number of entries in the sequence of code points that
makes up the string.

Size restrictions are given after the type name between square brackets. If there is one number between the square
brackets, values have to have exactly this amount of entries in the code point sequence. If there are two numbers
between the square brackets with ".." between them, the first number is the minimum code point sequence length,
and the second number is the maximum code point sequence length.

So for example, for a type UnicodeString[3], "abc" and "Ὂ�ὒ�Ὡ�" would be valid values, but "ab" and "abcdef" are not
valid values. An emoji for a man with a certain skin tone with white hair is also not valid as a UnicodeString[3] because
it consists of four code points, for "man", the skin tone, the zero-width joiner and the white hair respectively.

For a type UnicodeString[1..3], "a" and "Ὂ�ὒ�" and "abc" are valid values, but "abcdef" is not valid.

In the serialized JSON form of OCPI messages, UnicodeString values are serialized as JSON strings.

AsciiString type
A character string to be interpreted by information technology systems. Case sensitive. Only printable ASCII is
allowed, that is all characters in these strings must have Unicode code points between U+0020 and U+007E inclusive.

Note that AsciiString allows spaces whereas CiAsciiString does not allow them.

When a size restriction is given with this type, it restricts the number of entries in the sequence of characters that
makes up the string.

Size restrictions are given after the type name between square brackets. If there is one number between the square
brackets, values have to have exactly this amount of entries in the character sequence. If there are two numbers
between the square brackets with ".." between them, the first number is the minimum character sequence length,
and the second number is the maximum character sequence length.

So for example, for a type AsciiString[3], "abc" would be a valid value, but "ab" and "abcdef" are not valid values. "éġç"
and "αβγ" are also not valid values for AsciiString[3] because the characters in them are not printable ASCII.

For a type AsciiString[1..3], "a" and "abc" are valid values, but "abcdef" is not valid.

All strings in messages and enumerations are case sensitive, unless explicitly stated otherwise.

In the serialized JSON form of OCPI messages, AsciiString values are serialized as JSON strings.

CiAsciiString type
A character string to be interpreted by information technology systems. Case insensitive. Only printable ASCII
excluding the space character is allowed, that is all characters in these strings must have Unicode code points
between U+0021 and U+007E inclusive.

Note that CiAsciiString does not allow spaces whereas AsciiString allows them.

For size restrictions on CiAsciiString, the same rules as for AsciiString apply.

7

In the serialized JSON form of OCPI messages, CiAsciiString values are serialized as JSON strings.

int type
A non-negative integer number.

When a size restriction is given with this type, it restricts the number of decimal places.

Size restrictions are given after the type name between square brackets. If there is one number between the square
brackets, values have to have exactly this amount of decimal places. If there are two numbers between the square
brackets with ".." between them, the first number is the minimum size, and the second number is the maximum size.

So for example, for a type int[3], 123 would be a valid value, but 12 or 1234 are not valid values. For a type int[1..3], 12
and 123 are valid values, but 1234 is not valid.

In the serialized JSON form of OCPI messages, int values are serialized as JSON numbers.

decimal type
A number that is to be used with decimal arithmetic. These numbers may be positive or negative or zero. They may
have as many decimals after the decimal point as is sufficient for correct price computation. Such numbers are used
for calculating the cost of Charging Sessions.

When serializing and deserializing objects containing fields with a decimal type, and using the values contained in
these objects, OCPI implementers have to take care to use arbitrary precision decimal arithmetic. This can be
accomplished by using code libraries for this purpose. These may be built in to the language itself, like Java’s
java.lang.BigDecimal class, or third-party products like bignumber.js and dinero.js for Javascript and Typescript.

In the serialized JSON form of OCPI messages, decimal values are serialized as JSON numbers.

Using floating-point types to represent these values is not appropriate and will lead to incorrect price calculation.
Unfortunately most JSON libraries will use floating point types to represent JSON numbers by default. Implementers
have to configure them to use arbitrary-precision decimal types instead.

URL type
A string of at most 255 characters that follows the w3.org spec.

In the serialized JSON form of OCPI messages, URL values are serialized as JSON strings.

PartyID type
An ISO 15118 e-mobility Party ID. In OCPI payloads these must be encoded in their shortest form as 5-character
strings, like "NLTNM".

Party IDs are case insensitive.

In the serialized JSON form of OCPI messages, PartyID values are serialized as JSON strings.

8

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/math/BigDecimal.html
https://github.com/MikeMcl/bignumber.js
https://github.com/dinerojs/dinero.js
http://www.w3.org/Addressing/URL/uri-spec.html

DateTime type
All timestamps SHALL be formatted as string following RFC 3339, with the following additional limitations:

• All timestamps SHALL be in UTC.

• Fractional seconds MAY be used.

• When fractional seconds are given, there SHALL be either one or three decimals after the point.

These are examples of valid values for DateTime fields:

2015-06-29T20:39:09Z
2016-12-29T17:45:09.2Z
2018-01-01T01:08:01.123Z

In the serialized JSON form of OCPI messages, DateTime values are serialized as JSON strings.

DisplayText class
Property Type Card. Description

language CiAsciiString[
2]

1 Language Code ISO 639-1.

text UnicodeStrin
g[0..512]

1 Text to be displayed to humans. Parties SHOULD NOT use HTML or
other markup languages in this field.

Example:

{
 "language": "en",
 "text": "Standard Tariff"
}

9

1. Registration
This section contains the Functional Use Cases for Registration, that is the set-up of an OCPI connection between two
OCPI Platforms.

1.1. Use Cases

1.1.1. UC: 01.01 - Initial credentials exchange (manual)

1 Objective(s) 1. Exchange credentials that allow either platform to initiate authenticated and
confidential communication to the other platform

2 Description Both platforms create a Certificate Signing Request (CSR), and send this to the other
platform. They then obtain a client certificate from the partner platform that they can use
to authenticate themselves to the other platform.

3 Actors Any

4 Flow 1. Platform A creates a CSR
2. Platform A sends that CSR to Platform B
3. Platform B checks the CSR against OCPI’s and Platform B’s security requirements. OCPI’s
requirements are the requirements of this use case below.
4. Platform B creates a client certificate based on the CSR that it received from Platform A
5. Platform B sends this client certificate to Platform A

5 Preconditions Both platforms have agreed to set up an OCPI connection between them

6 Postconditions Platform A has a client certificate that allows it to make authenticated requests to Platform
B

7 Error handling When any step fails, retry the failing step or the whole procedure

8 Remark(s) OCPI does not specify the technical means by which the CSRs and client certificates are to
be exchanged. Typically one would use email or instant messaging applications.
While this use case is described from the perspective of one platform, both platforms have
to execute this use case in the initiating role in order to establish an OCPI connection.

Exchange credentials

PLATFORM A PLATFORM B

Create Certificate Signing Request

Certificate Signing Request

Place phone call to confirm CSR authenticity and Platform Identity

Confirm authenticity of CSR and Platform Identity in phone call

Create client certificate for PLATFORM A to authenticate to PLATFORM B

Client certificate

PLATFORM A has a client certificate to authenticate itself to PLATFORM B when
making OCPI requests

Figure 2. Sequence Diagram: Initial credentials exchange (manual)

10

Table 2. UC: 01.01 Requirements

ID Precondition Requirement

R.01.01.
01

The commonName field of the CSR SHALL contain
Platform A’s Platform Identity

R.01.01.
02

Platform A’s Platform Identity SHALL be a domain name
of which the platform creating the CSR controls the
public DNS records

R.01.01.
03

Platform A’s Platform Identity SHOULD contain a domain
name that is recognized by EV roaming professionals as
identifying the platform creating the CSR

R.01.01.
04

Platform B SHALL validate that the CSR indeed comes
from Platform A by placing a phone call to Platform A
and confirming the Platform Identity in the CSR with
them

R.01.01.
05

Cryptographic parameters at every step in the process
SHALL be chosen following the guidelines in [TLSGUID]

R.01.01.
06

Cryptographic parameters at every step in the process
SHOULD be chosen in a way that is not "Phase out"
according to [TLSGUID]

R.01.01.
07

The CSR SHALL be restricted to TLS WWW Client
Authentication and SHALL NOT be permitted for TLS
WWW Server Authentication as described in [X509]

1.1.2. UC: 01.02 - Establish secure connection

1 Objective(s) 1. Set up a confidential and authenticated communication channel to another OCPI
platform

2 Description Platform A obtains a URL to an OCPI endpoint on Platform B. Platform A then sets up a TLS
connection to the host from this URL.

3 Actors Any

4 Flow 1. Platform A obtains a URL to one of its OCPI modules, typically by following a later use
case from this document referencing this use case
2. Platform A makes a request to the host from the URL to set up a TLS connection
3. Platform A authenticates Platform B using a server certificate according to TLS
4. Platform B authenticates Platform A using a client certificate according to TLS
5. Both platforms agree on an encryption method according to TLS

5 Preconditions Both platforms have exchanged credentials as per Initial credentials exchange

6 Postconditions There is a confidential, authenticated communication channel through which Platform A
can send its request to Platform B and Platform B can send its responses back

7 Error handling If any step fails, platforms should check their credentials and their TLS parameters. If the
credentials are found to be causing the problem, the platforms should perform Initial
credentials exchange to obtain working credentials

11

8 Remark(s)

Establish secure connection

PLATFORM A PLATFORM B

URL

TLS handshake specified in TLS specifications

request TLS connection

authenticate PLATFORM A based on its client certificate

authenticate PLATFORM B based on its server certificate

PLATFORM A and PLATFORM B agree on encryption method

PLATFORM A and PLATFORM B have a secure communication channel for requests
from PLATFORM A to PLATFORM B and the corresponding responses

Figure 3. Sequence Diagram: Establish secure connection

Table 3. UC: 01.02 Requirements

ID Precondition Requirement

R.01.02.
01

The URL used by Platform A SHALL be an "https" scheme
URL according to [HTTPMSG]

R.01.02.
02

PLATFORM A SHALL validate that PLATFORM B presents a
valid server certificate following the guidelines in
[TLSGUID]

R.01.02.
03

PLATFORM B SHALL validate that PLATFORM A presents a
valid client certificate as produced by PLATFORM B
according to Initial credentials exchange

R.01.02.
04

The platforms SHALL enforce the guidelines in [TLSGUID]
during the TLS handshake

R.01.02.
05

The platforms SHOULD NOT allow a TLS connection to be
set up with parameter choices that are "Phase out"
according to [TLSGUID]

1.1.3. UC: 01.03 - Handshake OCPI connection parameters

1 Objective(s) 1. Set the OCPI version to use and exchange OCPI base URLs between the partner
platforms

2 Description Platform B shares its OCPI base URL with Platform A. Platform A then sends a POST
request with its desired OCPI version, OCPI base URL and request timeout to Platform B.
Platform B responds to indicate its acceptance of the connection, also giving its own
request timeout in the response body.

3 Actors Any

12

4 Flow 1. Platform B shares its OCPI base URL with Platform A
2. Platform A sets up a secure communication channel to Platform B according to Establish
secure connection
3. Platform A makes an HTTP POST request to Platform B’s base URL with "/connection"
appended over the secure channel. The request body contains Platform A’s desired OCPI
version
4. Platform B responds to this request with its own parameters

5 Preconditions Both platforms have exchanged credentials as per Initial credentials exchange

6 Postconditions The two platforms have an OCPI connection between them.

7 Error handling If Platform B already has a connection to Platform A, it SHOULD respond to the incoming
connection POST request with HTTP status 409 Conflict
If Platform B does not wish to set up an OCPI connection at the OCPI version that Platform
A requests, it should respond to the incoming connection POST request with an HTTP
status 409 Conflict

8 Remark(s) OCPI does not specify the technical means by which Platform B’s base URL is shared with
Platform A. Typically one would use email or instant messaging applications.

Handshake OCPI connection parameters

PLATFORM A PLATFORM B

PLATFORM B's OCPI base URL (manual exchange)

POST /ocpi/connection
+ desired OCPI version
+ PLATFORM A's OCPI base URL
+ Platform A's OCPI HTTP request timeout

PLATFORM A and PLATFORM B use certificates obtained using UC 1 and the
connection establishment procedure described in UC 2 to authenticate each
other

store connection parameters for PLATFORM A

200 OK
+ Platform B's OCPI HTTP request timeout

store connection parameters for PLATFORM B

PLATFORM A and PLATFORM B have set up an OCPI connection

Figure 4. Sequence Diagram: Handshake OCPI connection parameters

Table 4. UC: 01.03 Requirements

ID Precondition Requirement

R.01.03.
01

The OCPI base URL for Platform B SHALL be an "https"
scheme URL according to [HTTPMSG]

R.01.03.
02

Platform A SHALL set up the connection to Platform B
according to Establish secure connection

R.01.03.
03

Platform A SHALL obtain the URL to make the POST to by
appending “/connection” to the path of the OCPI base
URL of Platform B as obtained in Handshake OCPI
connection parameters

R.01.03.
04

Platform A SHOULD put a ConnectionParametersRequest
object in the request body

13

ID Precondition Requirement

R.01.03.
05

Platform A SHOULD set its requested version in the
ConnectionParametersRequest object to "3.0"

R.01.03.
06

Platform B intends to accept the connection
handshake offer from Platform A

Platform B SHOULD respond with a success status code

R.01.03.
07

Platform B intends to accept the connection
handshake offer from Platform A

Platform B SHOULD put a
ConnectionParametersResponse object in the response
body

R.01.03.
08

Platform B already has an OCPI connection to
Platform A

Platform B SHOULD respond to the incoming POST
request with HTTP status 409 Conflict

R.01.03.
09

Platform B does not wish to set up an OCPI
connection with Platform A at the requested
version

Platform B SHOULD respond to the incoming POST
request with HTTP status 409 Conflict

1.1.4. UC: 01.04 - Renew certificate

1 Objective(s) 1. Platform A obtains a new client certificate to make authenticated requests to Platform B

2 Description Certificates for use with TLS have a limited validity period. By renewing their client
certificate platforms can make sure that their requests to a partner platform can be
authenticated after the validity of their current client certificate expires.

3 Actors Any

4 Flow 1. Platform A makes an HTTP POST request to Platform B over a secure connection set up
according to Establish secure connection, giving Platform B a CSR and a callback ID with
which Platform B can post the client certificate
2. Platform B responds with HTTP status code 200 OK
3. Platform B checks if the CSR meets OCPI’s and Platform B’s requirements
3. Platform B creates a new client certificate for Platform A
4. Platform B makes an HTTP POST request to a URL containing the callback ID given by
Platform A at step 1 with the client certificate in the request body
5. Platform A starts using the new client certificate for its requests to Platform B

5 Preconditions Both platforms have exchanged client certificates already according to Initial credentials
exchange.
Both these client certificates are valid at the time this use case is attempted.

6 Postconditions Platform A is using a new client certificate to make authenticated requests to Platform B

7 Error handling If Platform B is unable or unwilling to create a new client certificate for Platform A, it
makes an HTTP POST request to the same URL that it would post the new certificate to,
indicating the reason for not providing a client certificate in the request body.
If one of the platforms does not have a valid client certificate to authenticate to the other
one, it should obtain a valid client certificate with Initial credentials exchange before
attempting this use case.

8 Remark(s) This use case is specified so that Platform B is free to choose a manual or a fully
automated process for issuing the new client certificate

14

Renew Certificate

PLATFORM A PLATFORM B

Create Certificate Signing Request

POST /ocpi/connection/renew-certificate
+ CSR
+ callback ID 12345

HTTP 200 OK

Check if CSR meets security requirements

Create new client certificate for
PLATFORM A to authenticate to PLATFORM B

POST /ocpi/connection/renew-certificate/12345
+ new client certificate

store new certificate

HTTP 200 OK

PLATFORM A has a new client certificate to authenticate itself to PLATFORM B when
making OCPI requests

Figure 5. Sequence Diagram: Renew certificate

Table 5. UC: 01.04 Requirements

ID Precondition Requirement

R.01.04.
01

Platform A SHALL obtain the URL to make the POST
request with the CSR to by appending
“/connection/renew-credentials” to the path of the OCPI
base URL of Platform B as obtained in Handshake OCPI
connection parameters

R.01.04.
02

Platform A SHALL set up the connection to Platform B
according to Establish secure connection

R.01.04.
03

Platform A SHALL send a CertificateRenewalRequest
object in the request body of the POST request to
Platform B

R.01.04.
04

Platform B received a
CertificateRenewalRequest object from
Platform A

Platform B SHOULD make its POST request with either a
certificate or a reason for rejection within 168 hours

R.01.04.
05

Platform B SHALL check if the value of the commonName
field in the CSR submitted by Platform A is the same as
the one in the commonName field of the certificate that
Platform A is using to authenticate to Platform B

15

ID Precondition Requirement

R.01.04.
06

Platform B finds that the value of the
commonName field in the CSR is different from
the value of the commonName field of the
certificate that Platform A is using to
authenticate to Platform B

Platform B SHALL NOT issue a new certificate to Platform
A

R.01.04.
07

Platform B issued a new certificate to Platform
A

Platform B SHOULD make the POST request to Platform
A to a URL obtained by appending /connection/renew-
credentials/ and then appending the callback ID given
by Platform A to Platform A’s OCPI base URL

R.01.04.
08

Platform B issued a new certificate to Platform
A

Platform B SHALL send a RenewedCertificate object in
the request body of the POST request to Platform A

R.01.04.
09

Platform B decided to not issue a new
certificate to Platform A

Platform B SHOULD make a POST request to Platform A
to a URL obtained by appending /connection/renew-
credentials/ and then appending the callback ID given
by Platform A to Platform A’s OCPI base URL

R.01.04.
10

Platform B decided to not issue a new
certificate to Platform A

Platform B SHOULD give the reason for not issuing a new
certificate to Platform A in the request body of its POST
request to Platform A

1.1.5. UC: 01.05 - Terminate OCPI connection

1 Objective(s) 1. Stop exchanging data and requests between platforms in a graceful way so that both
platforms are aware that the connection is terminated

2 Description Platform A sends a request to terminate the OCPI connection to Platform B. Platform B
acknowledges this and both platforms stop accepting each other’s client certificates.

3 Actors Any

4 Flow 1. Platform A sends a "bye" request to Platform B
2. Platform B stops accepting the client certificate of Platform A for new requests
3. Platform B responds to the "bye" request
4. Platform A stops accepting the client certificate of Platform B for new requests

5 Preconditions Platform A has a client certificate to authenticate to Platform B, obtained by Initial
credentials exchange or Renew certificate.

6 Postconditions There is no OCPI connection between the platforms

7 Error handling n/a

8 Remark(s) n/a

16

Terminate OCPI Connection

PLATFORM A PLATFORM B

POST /ocpi/connection/bye

Stop accepting requests with PFA's client certificate

OK

Stop accepting requests with PFB's client certificate

There is no more OCPI connection between PLATFORM A and PLATFORM B

Figure 6. Sequence Diagram: Terminate OCPI connection

Table 6. UC: 01.05 Requirements

ID Precondition Requirement

R.01.05.
01

Platform A SHALL obtain the URL to make the POST
request for termination to by appending
“/connection/bye” to the path of the OCPI base URL of
Platform B as obtained in Handshake OCPI connection
parameters

R.01.05.
02

Platform A SHALL set up the connection to Platform B
according to Establish secure connection

R.01.05.
03

After Platform B has responded to Platform A, Platform B
SHOULD NOT accept incoming requests with any client
certificate with the commonName field set to the
Platform Identity of Platform A

R.01.05.
04

After Platform A has processed the response from
Platform B, Platform A SHOULD NOT accept incoming
requests with any client certificate with the
commonName field set to the Platform Identity of
Platform B

1.1.6. UC: 01.06 - Request supported OCPI versions

1 Objective(s) 1. Learn which versions of OCPI are supported by a partner platform

2 Description Platform A makes a request to Platform B for Platform B’s supported OCPI versions.
Platform B responds with a list of supported versions and the base URLs to use for them.

3 Actors Any

4 Flow 1. Platform A requests supported OCPI versions from Platform B
2. Platform B responds to Platform A with a list of OCPI versions it supports

5 Preconditions Platform A has a client certificate to authenticate to Platform B, obtained by Initial
credentials exchange or Renew certificate.

17

6 Postconditions Platform A has information on which OCPI versions Platform B supports

7 Error handling n/a

8 Remark(s) Unlike in previous OCPI versions, requesting the list of supported OCPI versions is not a
necessary step in setting up an OCPI connection between two platforms

Request supported OCPI versions

PLATFORM A PLATFORM B

GET /ocpi/versions

HTTP 200 OK
+ supported versions

Figure 7. Sequence Diagram: Request supported OCPI versions

Table 7. UC: 01.06 Requirements

ID Precondition Requirement

R.01.06.
01

Platform A SHALL obtain the URL to make the GET
request to by appending “/versions” to the path of the
OCPI base URL of Platform B as obtained in Handshake
OCPI connection parameters

R.01.06.
02

Platform A SHALL set up the connection to Platform B
according to Establish secure connection

R.01.06.
03

The response body of Platform B’s response SHOULD
contain an OcpiVersions object

1.2. Object types for Registration use cases

1.2.1. ConnectionParametersRequest class

Field Name Type Cardinality Description

18

version AsciiString[1..12] 1 The OCPI version that
Platform B requests to use
with Platform A

request_timeout integer 1 A timeout, in milliseconds,
for Platform A to use when
making OCPI HTTP
requests to platform B.
That is, after this many
milliseconds have elapsed
after Platform A made a
request without Platform A
receiving a response to it,
Platform A SHOULD not
expect to receive a
response from Platform B
to that request anymore.

base_url URL 1 Platform B’s base URL

1.2.2. ConnectionParametersResponse class

Field Name Type Cardinality Description

request_timeout integer 1 A timeout, in milliseconds,
for Platform B to use when
making OCPI HTTP
requests to platform A.
That is, after this many
milliseconds have elapsed
after Platform B made a
request without Platform B
receiving a response to it,
Platform B SHOULD not
expect to receive a
response from Platform A
anymore.

1.2.3. CertificateRenewalRequest class

Field Name Type Cardinality Description

csr AsciiString[0..5500] 1 The certificate signing
request according to RFC
2986 ([CSR]), encoded
according to PEM ([PEM])

callbackId AsciiString[0..36] 1 The callback ID for the
other party to create a URL
to post the signed
certificate.

19

1.2.4. OcpiVersions class

Field Name Type Cardinality Description

versions OcpiVersion + The versions of OCPI that
the platform supports

1.2.5. OcpiVersion class

Field Name Type Cardinality Description

version AsciiString[3..10] 1 The version number of the
OCPI version being
described in this record

url URL 1 The OCPI base URL for this
platform for version 3.0.
For earlier versions of
OCPI, the URL to the
endpoint containing
version specific
information.

1.2.6. RenewedCertificate class

Field Name Type Cardinality Description

certificateChain AsciiString[0..10000] 1 The certificate chain for the
receiving platform to
identify itself. The
certificate SHOULD be a
X.509 certificate ([X509]),
encoded according to PEM
([PEM]). The PEM bundle
MAY also contain sub CA
certificates. In case it does,
the certificates SHOULD be
ordered in the bundle from
the leaf certificate to the
root certificate.

20

2. Request Addressing
This section contains the Functional Use Cases for the Addressing of OCPI requests.

2.1. Note from the editor on changes from OCPI 2.2
This section is now addressed to reviewers of OCPI 3.0 drafts. It may be removed or edited into a non-normative section for
OCPI implementers after reviews

This "request addressing" chapter is the outcome of looking at the Roaming Hub related Business Use Cases gathered
for OCPI 3.0.

Compared to OCPI 2.2, OCPI 3.0 takes a simpler approach to addressing requests to Parties on Platforms operated by
Roaming Hubs or other kinds of platforms that serve multiple Parties.

OCPI 3.0 does not have any data types or request-response flows that are specific to Roaming Hubs or other complex
Platform topologies. Instead, OCPI 3.0 aims to provide basic data types and use cases about making requests
between Parties hosted on Platforms. These message flows and data types are intended to be flexible enough to be
used by simple and complex Platforms alike.

This makes OCPI simpler, because the things that make different kinds of Platforms different from each other are no
longer OCPI’s concern. And the simpler OCPI is, the quicker it can be implemented and the more interoperability it
offers between implementing Platforms. It does mean that the OCPI use cases are more abstract and may take some
more effort to be understood in the context of a specific type of Platform.

I have tried to offer specific examples for certain types of Platform topologies where I thought this was in order.
Please provide feedback in your review on how clear the consequences of this rework of Hub support are for you, and
what we could do to make it easier to understand.

If you wonder where the "GET ALL" and "Broadcast Push" from OCPI 2.2 and 2.2.1 have gone: those will be taken care
of in a subsequent chapter about a Pub/sub mechanism aka subscription model aka Party Issued Object replication.
The basic idea is that now that we have Hub Party IDs and a way to address requests to Parties, you can subscribe to a
Hub Party to "GET ALL", or a Hub Party can subscribe to a Party’s data to do a reverse "Broadcast Push". The
Broadcast Push has to be reverse because in OCPI 3.0, all data replication will be initiated by the data consumer,
never the data producer.

While working on these Request Addressing use cases, I have also made a bunch of other changes that I stumbled
upon:

• The polarities of Platform A and Platform B were reserved in the Establish Secure Connection and Handshake
OCPI Connection Parameters use cases.

• I replaced the String and CiString datatypes by AsciiString, CiAsciiString and UnicodeString to allow non-ASCII text
where this is in order.

• Instead of separate country codes and party ID fields, all messages referring to parties now use a single 5-
character Party ID field, as suggested by Rudolph Froger.

• Contact information for technical matters was added to the metadata exchanged about Parties, as suggested in
OCPI Development meetings.

21

2.2. Introduction
OCPI is a network protocol that is used by software systems called Platforms to transfer data and procedure calls
between Parties. Therefore, when making an OCPI request, a Platform has to specify in the request which Party is the
sender and which Party is the intended recipient. The use cases in this chapter describe how Platforms should do this.

Where the Use Cases in this chapter refer to "Hub" or "Roaming Hub", the Roaming Hub role is meant as defined in
the Business Use Cases document, section 1.2.2, EV Charging Market Roles.

2.3. Use Cases

2.3.1. UC: 02.01 - Request Parties served by Platform

1 Objective(s) 1. Platform A learns which parties are available for OCPI connection through Platform B

2 Description Platform A obtains a list of parties served from Platform B

3 Actors Any

4 Flow 1. Platform A makes a request to Platform B.
2. Platform B responds with the list of parties that it serves to Platform A.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.

6 Postconditions Platform A knows which Parties Platform B serves to it.

7 Error handling n/a

8 Remark(s) OCPI 2.2.1 and 2.2 distinguished "roles" exchanged using the credentials module and
"client info" exchanged using the hub client info module. OCPI 3.0 does not distinguish
between the use cases behind those two mechanisms. Platform A reports all of the Parties
it serves to Platform B in this use case, regardless of which relation these Parties have to
Platform A.

Typically, Platform A will want to periodically execute this use case flow to check for
changes in the set of Parties that Platform B is serving to Platform A.

22

Request Parties served by Platform

PLATFORM A PLATFORM B

GET /ocpi/parties

HTTP 200 OK
+ Parties served to Platform A by Platform B

Figure 8. Sequence Diagram: Request Parties served by Platform

Table 8. UC: 02.01 Requirements

ID Precondition Requirement

R.02.01.
01

Platform A SHALL obtain the URL to make the GET
request to by appending “/parties” to the path of the
OCPI base URL of Platform B as obtained in Handshake
OCPI connection parameters

R.02.01.
03

Platform A SHALL set up the connection to Platform B
according to Establish secure connection

R.02.01.
02

The response body of Platform B’s response SHOULD
contain a PlatformParties object

R.02.01.
03

Platform B offers Hub functionalities to
Platform A

Platform B SHALL fill in the party ID of the Hub party on
its platform in the hub_party_id field of its response

R.02.01.
04

Platform B offers no Hub functionalities to
Platform A

Platform B SHALL leave the hub_party_id field unset in its
response

2.3.2. UC: 02.02 - Make a request on behalf of a Party to a Party on another
Platform

1 Objective(s) 1. A request from a Party to a Party is relayed over a connection from a Platform to a
Platform

2 Description Request and response messages are enveloped with addressing fields in order to allow
party-to-party requests to be exchanged over a platform-to-platform connection

3 Actors Any

23

4 Flow 1. Platform A adds addressing information to a request from Party X to Party Y by putting
the sender and receiver Party IDs in the URL
2. Platform A sends the request to Platform B
3. Platform B handles the request on behalf of Party Y
4. Platform B envelopes the response data with addressing fields indicating the answering
party and the intended receiver party
5. Platform B sends the response to Platform A
6. Platform A handles the enclosed response on behalf of Party X

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform A serves Party X to Platform B.
Platform B serves Party Y to Platform A.
Platform A has a URL and an HTTP request verb for an operation that it wants to request
on behalf of Party X from Party Y
NOTE: URLs and HTTP request verbs for operations are given in this document in later use
cases that reference this use case.

6 Postconditions Party X’s request has been answered by Platform B on behalf of Party Y

7 Error handling If Platform B cannot answer the request on behalf of Party Y, it can send a response to
inform Platform A and Party X of this

8 Remark(s) OCPI does not impose requirements on how Platform B communicates with Party Y to
come up with a response on behalf of Party Y.
Two different approaches are possible: local lookup and request forwarding.
Local lookup will typically be used by Platforms commissioned to host a single Party, like
where a CPO is running a Platform of their own to integrate with other Parties. Roaming
Hubs may also use local lookup, exchanging the information needed to answer requests
on behalf of Party Y with Party Y before a request from Party X has come in yet.
The alternative approach of request forwarding is typically used by Roaming Hubs. Here,
upon receiving the request on behalf of Party X from Platform A, Platform B forwards this
request in some way to another system that can answer it on behalf of Party Y, and then
relays the response to Platform A again using OCPI. In this scenario, the communication
channel between Platform B and the other system may or not be an OCPI connection;
whatever it is is not of concern to the OCPI Connection between Platform A and Platform
B.
Extra sequence diagrams are given below to clarify the local lookup and request
forwarding variants.

OCPI 2.2 and 2.2.1 allowed the use of HTTP headers for addressing on the response
messages. OCPI 3.0 has no equivalent functionality. This is because the request and
response messages are already correlated by the HTTP protocol. When a Platform receives
a response, it knows that the sender of this response should be the receiver of the
corresponding request and the receiver should be the sender of the response. Allowing
Platforms to also provide their own addressing headers presents an unnecessary security
risk as a malicious Platform could spoof OCPI’s addressing headers while they cannot
spoof the HTTP-level request-response correlation.

24

Make a request on behalf of a Party to a Party on another Platform

PLATFORM A PLATFORM B

We use DEPTX and USPTY as the example party IDs of Party X and Party Y respectively

POST /ocpi/from/DEPTX/to/USPTY/...

PLATFORM B comes up with a response on behalf of USPTY as it sees fit
If PLATFORM B is a single Party's Platform, it will typically use a local database lookup
If PLATFORM B is a Roaming Hub Platform serving multiple Parties, it may forward the request to another Platform, and use the response to that

enveloped response
+data: ...

Figure 9. Sequence Diagram: Make a request on behalf of a Party to a Party on another Platform

Make a request on behalf of a Party to a Party on another Platform - local lookup variant

PLATFORM A PLATFORM B

We use DEPTX and USPTY as the example party IDs of Party X and Party Y respectively

POST /ocpi/from/DEPTX/to/USPTY/...

Platform B consults its own database, which stores
data on Party Y, for the answer to Party X's request

enveloped response
+data: ...

Figure 10. Sequence Diagram: Make a request on behalf of a Party to a Party on another Platform - local lookup
variant

25

Make a request on behalf of a Party to a Party on another Platform - request forwarding variant

PLATFORM A PLATFORM B PLATFORM C

We use DEPTX and USPTY as the example party IDs of Party X and Party Y respectively.

For this scenario to make sense, you can think of Platform A as an MSP's own
Platform hosting only Party X, Platform B as a Roaming Hub platform hosting
many parties including Party X and Party Y, and Platform C as a CPO's own
Platform hosting only Party Y.

POST /ocpi/from/DEPTX/to/USPTY/...

PLATFORM B forwards the request from DEPTX to Platform C in order to get
an answer to it

POST /ocpi/from/DEPTX/to/USPTY/...

Once Platform A responds to Platform B, Platform B forwards this response to
Platform A to answer the original request

enveloped response
+data: ...

enveloped response
+data: ...

In this example Platform B and Platform C use OCPI to exchange the request and
response, but the communication between Platform A and Platform B can follow
the same pattern even if other communication technologies are used between
Platform B and Platform C.

Figure 11. Sequence Diagram: Make a request on behalf of a Party to a Party on another Platform - request
forwarding variant

Table 9. UC: 02.02 Requirements

ID Precondition Requirement

R.02.02.
01

The URL that Platform A makes a request to SHALL NOT
differ from the OCPI base URL of Platform B in other
components than path, query and fragment as defined
in [URI]

R.02.02.
02

The URL that Platform A makes a request to SHALL have
a path component that is obtained by adding the
following things to the base URL in the order they are
presented here: a segment "from", a segment that is the
five-character Party ID of Party X that is the sender, a
segment "to", a segment that is the five-character Party
ID of Party Y that is the receiver, and finally the relative
path specified in a later use case referencing this use
case

R.02.02.
03

Platform A SHALL set up the connection to Platform B
according to Establish secure connection

R.02.02.
04

The response body of Platform B’s response to Platform
A SHALL contain an OcpiResponse object

26

ID Precondition Requirement

R.02.02.
05

When Platform B receives a request with a
body that is not a valid JSON object according
to [JSON]

Platform B MUST respond with an HTTP response with
status code 400 (Bad Request)

R.02.02.
06

When Platform B receives a request with a
body that is syntactically valid JSON and
addresses an existing resource

Platform B MUST NOT respond with an HTTP response
with an HTTP status code indicating a client error

R.02.02.
07

When Platform B receives a GET request for a
resource that does not exist

Platform B SHOULD respond with an HTTP response with
status code 404 (Not Found)

R.02.02.
08

When Platform B receives a request with a
body containing a valid OCPI object, and the
object already existed, and the object has been
successfully updated by Platform B

Platform B SHOULD respond with an HTTP response with
status code 200 (OK)

R.02.02.
09

When Platform B receives a request with a
body containing a valid OCPI object and the
object has been newly created in Platform B’s
ssystem as a result of the request

Platform B SHOULD respond with an HTTP response with
status code 201 (Created)

R.02.02.
10

When Platform B receives a request with a
body containing a valid OCPI object but is not
able to update or create a resource

Platform B SHOULD respond with an HTTP response with
status code 200 (OK) and set the status field of the
response body to one of the error statuses documented
under Status Codes

R.02.02.
11

When Platform B sends a response to a
request that is made by Platform A according
to a use case described in this document

Platform B SHALL NOT use custom status code range
values in the status field of the response body

R.02.02.
12

Platform A SHOULD set an HTTP header Ocpi-Request-Id
on its request to Platform B with a value that is a newly
generated UUID

R.02.02.
13

Platform A is making its request to Platform B
in order to answer another OCPI request that
Platform A received, as in the Request
Forwarding flow

Platform A SHOULD set an HTTP header Ocpi-
Correlation-Id on its request to Platform B with a value
that is the same as the value of the Ocpi-Correlation-Id
header in the request that Platform A received

R.02.02.
14

Platform A is not making its request to
Platform B in order to answer another request
that Platform A received

Platform A SHOULD set an HTTP header Ocpi-
Correlation-Id on its request to Platform B with a value
that is a newly generated UUID

R.02.02.
15

Platform B SHOULD set an HTTP header Ocpi-Request-Id
on its response to Platform A with a value that is the
same as the value of the Ocpi-Request-Id header in the
request that Platform B received

R.02.02.
16

Platform B SHOULD set an HTTP header Ocpi-
Correlation-Id on its response to Platform A with a value
that is the same as the value of the Ocpi-Correlation-Id
header in the request that Platform B received

27

NOTE
While R.02.02.11 prohibits the use of custom status codes in responses to requests following use
cases in this document, custom status codes can be used when Platforms are using custom
extensions to request operations or exchange data that are not in scope of this document.

NOTE
When custom status codes are used, keep in mind that different custom modules could use the
same values with a different meaning, as they are not standardized.

NOTE
the Oci-Request-Id and Ocpi-Correlation-Id serve to facilitate debugging and to allow detection of
routing loops in complex topologies. When requests are proxied, the Ocpi-Request-Id changes on
each hop, whereas the Ocpi-Correlation-Id stays the same, as in the diagram below.

CPO HUB MSP

Request
X-Request-ID: 55b28c1a-62c0-42b3-9fac-69b5b5d08e5c
X-Correlation-ID: 621d43d6-8bb5-4ff7-929c-6d64f85e05c0

Request
X-Request-ID: ee5738a7-1a2c-4a51-bfef-4506fd1e4b38
X-Correlation-ID: 621d43d6-8bb5-4ff7-929c-6d64f85e05c0

Response
X-Request-ID: ee5738a7-1a2c-4a51-bfef-4506fd1e4b38
X-Correlation-ID: 621d43d6-8bb5-4ff7-929c-6d64f85e05c0

Request
X-Request-ID: 55b28c1a-62c0-42b3-9fac-69b5b5d08e5c
X-Correlation-ID: 621d43d6-8bb5-4ff7-929c-6d64f85e05c0

Figure 12. Sequence Diagram: Make a request on behalf of a Party to a Party on another Platform - Ocpi-
Request-Id and Ocpi-Correlation-Id

2.4. Object types for Request Addressing use cases

2.4.1. BusinessDetails class

Gives more information about an organization that is a participant in OCPI communication as a Location operator, a
Party or a Platform.

Property Type Card. Description

name UnicodeStrin
g[1..100]

1 Name of the company.

website URL ? URL of the company’s website.

logo Image ? The company’s logo.

technical_contact PointOfCont
act

? Contact point of the company for technical matters.

2.4.2. Image class

This class references an image related to an EVSE in terms of a file name or url. According to the roaming connection
between one EVSE Operator and one or more Navigation Service Providers, the hosting or file exchange of image
payload data has to be defined. The exchange of this content data is out of scope of OCPI. However, the

28

recommended setup is a public available web server hosted and updated by the EVSE Operator. Per Charging Station
an unlimited number of images of each type is allowed. Recommended are at least two images where one is a
network or provider logo and the second is a station photo. If two images of the same type are defined, not only one
should be selected but both should be displayed together.

Photo Dimensions: The recommended dimensions for all photos is a minimum width of 800 pixels and a minimum
height of 600 pixels. Thumbnail should always have the same orientation as the original photo with a size of 200 by
200 pixels.

Logo Dimensions: The recommended dimensions for logos are exactly 512 pixels in width height. Thumbnail
representations of logos should be exactly 128 pixels in width and height. If not squared, thumbnails should have the
same orientation as the original.

Property Type Card. Description

url URL 1 URL from where the image data can be fetched through a web
browser.

thumbnail URL ? URL from where a thumbnail of the image can be fetched
through a webbrowser.

category ImageCategory 1 Describes what the image is used for.

type CiAsciiString[4] 1 Image type like: gif, jpeg, png, svg

width int[1..5] ? Width of the full scale image

height int[1..5] ? Height of the full scale image

2.4.3. ImageCategory enum

The category of an image to obtain the correct usage in a user presentation. The category has to be set accordingly to
the image content in order to guarantee the right usage.

Value Description

CHARGER Photo of the physical device that contains one or more EVSEs.

ENTRANCE Location entrance photo. Should show the car entrance to the location from street side.

LOCATION Location overview photo.

NETWORK Logo of an associated roaming network to be displayed with the EVSE for example in
lists, maps and detailed information views.

OPERATOR Logo of the Charge Point Operator, for example a municipality, to be displayed in the
EVSEs detailed information view or in lists and maps, if no network logo is present.

OTHER Other

OWNER Logo of the Charging Station owner, for example a local store, to be displayed in the
EVSEs detailed information view.

2.4.4. InterfaceRole enum

29

Value Description

SENDER Sender Interface implementation, interface implemented by the owner of data, so the
Receiver can Pull information from the data Sender/owner.

RECEIVER Receiver Interface implementation, interface implemented by the receiver of data, so the
Sender/owner can Push information to the Receiver.

2.4.5. ModuleID OpenEnum

Identifiers for OCPI modules.

An OCPI module is a type of data that can be exchanged between EV charging market parties via OCPI with its
associated specifications.

Each modules' specific datatypes and specifications are described in its own chapter in this document.

The following table contains the list of modules in this version of OCPI. Modules are optional in the sense that an
OCPI implementation does not have to offer each module. There may be dependencies between modules however,
that is, it may be the case that some modules cannot be offered without also offering one or more other modules. If
there are such dependencies between modules, it will be mentioned in the affected modules' descriptions.

Module ModuleID

CDRs cdrs

ChargingProfiles chargingprofiles

Commands commands

EVSE Status evsestatuses

Invoice Reconciliation irrs

Locations locations

Sessions sessions

Power Regulation meterreadings

Tariffs tariffs

Tariff Assocations tariffassociations

Tokens tokens

2.4.6. OcpiResponse class

Field Name Type Cardinality Description

routed_receiver CiAsciiString[5] ? The party ID of the party
that a Roaming Hub is
answering the request on
behalf of, if any

30

data any JSON value * or ? Contains the actual
response data object or list
of objects from each
request, depending on the
cardinality of the response
data, this is an array (card.
* or +), or a single object
(card. 1 or ?)

status_code int 1 OCPI status code, as listed
in Status Codes, indicates
how the request was
handled. To avoid
confusion with HTTP codes,
OCPI status codes consist
of four digits.

status_message UnicodeString ? An optional status message
which may help when
debugging.

timestamp DateTime 1 The time this message was
generated.

2.4.7. OCPI response status codes

OCPI defines its own set of status codes, apart from the ones defined by HTTP. The use of these status codes is
described in the Make a request to a party on behalf of a party use case.

Range Description

1xxx Success

2xxx Client errors – The data sent by the client can not be processed by the server

3xxx Server errors – The server encountered an internal error

4xxx Hub errors - The roaming hub ran into a problem routing the request to the receiver
party

5xxx Subscription errors - A Party Issued Object subscription cannot be created or torn down

6xxx Party Issued Object errors - The update cannot be applied to the replicated Party Issued
Object

7xxx Remote Procedure Call errors - The requested operation resulted in an error

When the status code is in the success range (1xxx), the data field in the response message SHOULD contain the
information as specified in the protocol. Otherwise the data field is unspecified and MAY be omitted, set to null or
something else that could help to debug the problem from a programmer’s perspective. For example, it could specify
which fields contain an error or are missing.

31

2.4.7.1. 1xxx: Success

Code Description

1000 Generic success code

19xx Reserved range for custom success status codes (1900-1999).

2.4.7.2. 2xxx: Client errors

Errors detected by the server in the message sent by a client where the client did something wrong.

Code Description

2000 Generic client error

2001 Invalid or missing parameters

2002 Not enough information, for example: Authorization request with too little information.

2003 Unknown Location, for example: Command: START_SESSION with unknown location.

2004 Unknown Token, for example: 'real-time' authorization of an unknown Token.

29xx Reserved range for custom client error status codes (2900-2999).

2.4.7.3. 3xxx: Server errors

Error during processing of the OCPI payload in the server. The message was syntactically correct but could not be
processed by the server.

Code Description

3000 Generic server error

3001 Unable to use the client’s API

39xx Reserved range for custom server error status codes (3900-3999).

2.4.7.4. 4xxx: Hub errors

For errors that a Platform encounters when sourcing information from a request receiver Party, the following OCPI
status codes SHALL be used.

Code Description

4000 Generic error

4001 Unknown receiver (The receiver Party ID in the URL is not recognized or not available for
making requests to)

4002 Timeout on forwarded request (message is forwarded, but request times out)

4003 Connection problem (Communication to an external system was needed to answer the
request, but this communication failed)

49xx Reserved range for custom hub error status codes (4900-4999).

32

2.4.7.5. 5xxx: Subscription errors

For errors that can occur when setting up or tearing down subscriptions, the following OCPI status codes SHALL be
used.

Code Description

5000 Generic error

5001 Subscriber party not recognized

5002 Subscriber party not authorized

5003 The party being subscribed to is not served by the
Platform being subscribed to

5004 The module being subscribed to is not served for the
party being subscribed to by the Platform being
subscribed to

5005 No such subscription

5006 No such object

2.4.7.6. 6xxx: Platform Issued Object update errors

For errors that can occur when applying updates to a Party Issued Object, the following OCPI status codes SHALL be
used.

Code Description

6000 Generic error

6001 Schema violation (the PIO after update does not conform
to the data schema for the module)

6002 No such subscription

6003 Immutable object (attempt to update an object to a new
version while the module declares it as immutable)

2.4.7.7. 7xxx: Remote Procedure Call errors

The set of error codes between 7000 and 7999 inclusive is reserved for errors that a specific Remote Procedure Call
can return according to R.04.01.07. Which error code is used for which error condition is defined in the separate
Remote Procedure Call use cases in the chapters specifying the various OCPI modules.

2.4.8. PartyRole class

Property Type Cardi
nalit
y

Description

module ModuleID 1 A module that this platform serves for this party

33

Property Type Cardi
nalit
y

Description

side InterfaceRole 1 A side (sender or receiver) this platform serves for the module
and party

2.4.9. PlatformParty class

Property Type Cardi
nalit
y

Description

roles PartyRole + The roles that this platform serves for this party.

business_details BusinessDetails 1 Details of this party.

party_id PartyID 1 The Party ID of this Party.

2.4.10. PlatformParties class

Field Name Type Cardi
nalit
y

Description

parties PlatformParty * The Parties that the Platform sending this PlatformParties object
serves to the Platform receiving this PlatformParties object

hub_party_id PartyID ? party ID of the Hub party of this platform

2.4.11. PointOfContact class

Field Name Type Cardi
nalit
y

Description

name UnicodeString[1..10
0]

1 The name of the point of contact. This can be the name of a
person, but it can also be the name of a department or team like
"Corporate Clients Desk".

email AsciiString[1..320] 1 The email address of the point of contact.

telephone AsciiString[1..15] 1 The telephone number at which the point of contact can be
reached.

34

3. Party Issued Objects

3.1. Introduction
This section is not normative.

A lot of the functionality of OCPI has always revolved around replicating information on the state of one Party’s
business objects to another Party’s systems. In previous versions of OCPI, there was no overarching design for how
this replication was done. For each OCPI Module (CDRs, Tokens, Locations, etc), a separate description was given of
how to replicate these objects. OCPI 3.0 aims to bring more structure to the way this type of information is replicated.
We have made the following design decisions:

• We define the concept of a "Party Issued Object" that allows us to write a generic description of data replication,
independently of the type of object being replicated. In practice this corresponds to the concept of "Client Owned
Object" from previous OCPI versions, although they are defined differently.

• Party Issued Objects are transferred in HTTP requests ("push")

• Party Issued Objects are transferred at the initiative of the consumer, which in combination with the push model
leads to a "pub-sub" communication pattern

• Each Party Issued Object has a version number, which allows more precise checks for being up to date than the
timestamps used in previous versions

• We require updates of a single Party Issued Object to be delivered in chronological order and allow parallelization
across different Party Issued Objects

3.1.1. Why such an abstract replication system?

The OCPI 3.0 pub-sub system is a significant departure from the way Client Owned Objects were exchanged in OCPI
2.2.1 and earlier. Parties with existing OCPI implementations have to invest to adapt their systems. We believe this
investment is worth it because of a number of reasons, outlined in separate sections below.

3.1.1.1. A reusable system

Although implementing the pub-sub system is more complex than implementing data replication for a single OCPI
module, the system can be used for all OCPI modules once implemented. OCPI 2.2.1 and earlier versions had little
overarching description of how replication of "Client Owned Objects" was to be done.

That the pub-sub system is described separately from the functional modules should also make it easier to implement
middleware products or open-source libraries that take care of managing OCPI connections and subscriptions. We
hope that with OCPI 3.0, there will be more and better offerings in this space than with OCPI 2.2 and earlier.

3.1.1.2. More reliable

The pub-sub system is designed to minimize the chance that objects are not replicated by accident. In OCPI 2.2.1 this
happens easily. The "push" form of replication in OCPI 2.2.1 is unreliable by design: OCPI 2.2.1 and earlier urge
systems that push data to not retry failed pushes.

The reliability of data replication therefore has to come from the "pull" form of replication in OCPI 2.2.1. The "pull"
form is implemented using paging and clock timestamps though. Paging is difficult to implement in a way that
guarantees that the client sees all data, and easy to implement in a way that performs poorly. Clock timestamps are

35

well known to be unreliable in distributed systems. Therefore reliable replication with OCPI 2.2.1 is tricky in practice
and impossible in theory.

OCPI 3.0 puts the burden for making sure that data consumers have a complete dataset on the data producer.
Producers have to keep trying to push data to consumers until the consumer confirms to them that they received the
message.

3.1.1.3. More frugal

In OCPI 2.2.1, when using the "pull" form of replication, data consumers are advised to sometimes do a "full get" of all
data for a module from the producer and compare that with their own dataset. This approach is very wasteful of
bandwidth and computing resources.

OCPI 3.0’s pub-sub model does not require any object to ever be sent again from the producer to the consumer after
the consumer has acknowledged it.

3.1.1.4. More interoperable

OCPI 2.2.1 described both a "pull" and a "push" form of data replication. Some systems only implemented one of the
two. If one system implements the one and another system implements the other, they end up uninteroperable.

In OCPI 3.0, all Party Issued Object data is pushed so no implementation mismatches can arise.

3.1.1.5. More stable

With OCPI 3.0 pub-sub the data consumer tells the data producer how many concurrent push requests they can
make. This helps prevent "Denial of Service" scenarios where the data producer overloads the consumer with too
much data or too many requests.

Conversely, the producer can set and enforce storage limits so the producer does not have to run out of storage
space when the consumer does not accept the producer’s updates.

3.1.1.6. Traceability of charge authorization

The OCPI 3.0 pub-sub system assigns version numbers to updates of Party Issued Objects. The main reason for this is
removing the reliance on clock times. It also brings an additional benefit however: CPOs can indicate in their Session
or CDR data which version of a Token they used to authorize the Session. This can be helpful when eMSPs and CPOs
are figuring out why unexpected authorizations occurred.

3.1.2. Implementing OCPI 3.0’s Party Issued Object pub-sub

The OCPI 3.0 pub-sub system is centered around subscriptions. In the general flow, a data consumer subscribes to
data of a certain module from a producer. After that, the producer pushes data to the consumer, until, possibly only
years later, one of the two parties cancels the subscription.

This general flow is illustrated in the following sequence diagram:

36

General subscription flow

CONSUMER PLATFORM PRODUCER PLATFORM

First, the data consumer platform subscribes to a certain module on the producer platform.

subscribe
+ party that is subscribing
+ party to subscribe to
+ module to subscribe to

accept subscription

Then, data is pushed.

loop [This possibly goes on for years and years]

If the Producer Platform has an update to a Party Issued Object for the Consumer Platform

send Party Issued Object update

confirm receipt

Finally, the subscription is canceled

alt [Consumer Platform ends up being no longer interested in this data]

cancel
+subscribed party
+party that is subscribed to
+module that is subscribed to

confirm cancellation

[Producer Platform ends up no longer able to provide the data]

cancel
+party that is subscribed to
+subscribed party
+module that is subscribed to

confirm cancellation

At this point the subscription no longer exists and no data is pushed
for these parties and this module.

3.1.2.1. How to store subscriptions

Subscriptions are durable, persistent objects. They come to be once a platform subscribes, and after that both the
consumer platform and the producer platform have to keep track of them until they are canceled.

To store a subscription, you have to identify it by:

• The platform that is subscribing (i.e. the data consumer platform)

• The party that is subscribing

• The platform that is subscribed to (i.e. the data producer platform)

• The party that is subscribed to

• The module that is subscribed to (i.e. the type of objects that the consumer is asking for)

The producer platform should also store the retry interval, the maximum number of concurrent requests, and the
maximum update queue size. These parameters are agreed between the platforms at the time the subscription is
created.

37

3.1.2.2. When and what to send

The diagram above states that the producer platform sends an update "If the Producer Platform has an update to a
Party Issued Object for the Consumer Platform". It does not go into detail about exactly when that is the case. In fact
the specification text below also does not provide more details. What a producer wants to share with a consumer, and
when this is shared, is ultimately the producer’s business decision to make.

There is a typical behavior that we foresee though. Typically the producer has a data set that they want to share with
the consumer, and they have this set ready already when the subscription is created. For example, once an eMSP
subscribes to a CPO’s Locations module, the CPO will typically already have a lot of Location data that they want to
share with the eMSP.

Therefore we expect that normally, immediately after the subscription is established, the producer will push the
current state of all their objects to consumer. After that, they will push updates to the consumer each time something
changes to one of these objects. For example, a CPO would push an update to the eMSP once a new EVSE is installed
in the Location.

Taking this expectation into account, the diagram comes to look like this:

38

General subscription flow

CONSUMER PLATFORM PRODUCER PLATFORM

First, the data consumer platform subscribes to a certain module on the producer platform.

subscribe
+ party that is subscribing
+ party to subscribe to
+ module to subscribe to

accept subscription

Then, the Producer's existing data set for this module is pushed

loop [While the Producer Platform has objects of this Module that the Consumer Platform has not yet acknowledged]

send Party Issued Object update of an unacknowledged object's current state

confirm receipt

loop [Then, every time something changes to one of the Producer Platform's objects]

send Party Issued Object update about the change

confirm receipt

Finally, the subscription is canceled

alt [Consumer Platform ends up being no longer interested in this data]

cancel
+subscribed party
+party that is subscribed to
+module that is subscribed to

confirm cancellation

[Producer Platform ends up no longer able to provide the data]

cancel
+party that is subscribed to
+subscribed party
+module that is subscribed to

confirm cancellation

At this point the subscription no longer exists and no data is pushed
for these parties and this module.

This pattern applies for those modules where objects created in the past are typically still relevant, like Locations,
Tokens and Tariffs. It is less likely to apply for modules like Sessions or CDRs where consumers are usually only
interested in current events, with only limited backfill of historic data if any.

3.1.2.3. Data storage on the producer side

It is important for implementers to realize that both the subscriptions and the Party Issued Objects themselves can be
long-living objects that remain relevant for years. It is therefore essential that OCPI 3.0 implementations fulfill the
requirements of the use cases in this chapter regardless of any redeployments, software upgrades, hardware failures
and network outages that may occur while the system is running.

Some of these requirements say that the producer retry an update request until it is confirmed by the consumer. This
means that producers have to store persistent queues of updates so that updates will be retried even after the

39

producer system has been rebooted, its network address has changed, or some other disruption of service has
occurred.

We expect that producers will use message queueing systems like RabbitMQ or Kafka to implement such a persistent
queue. Typically they will create a queue per subscription in such a queuing system. Producers may also want to
create an "exchange" or "topic" per subscription to be able to control precisely what objects are shared at what time
with which subscriptions. Some message queuing systems may already allow for such control through features like
RabbitMQ’s "routing keys", so that only one topic or exchange would have to exist per module.

3.1.2.4. Data storage on the consumer side

In order to process updates efficiently, a consumer will probably want to store the Party Issued Objects it receives in a
database indexed by the the consumer party ID, the producer platform ID, the producer party ID and the module ID.
This allows it to quickly check if it already has the Party Issued Object that it is receiving an update for, and if so, what
the version of that object it has.

It is probably wise to store the Party Issued Objects as received via OCPI in a separate dataset from the live objects
used in a party’s business operations. This allows the consumer platform to receive the same object from multiple
producer platforms, and choose which source platform to use for its business operations. It also allows the consumer
party to receive data via OCPI and review it before it is taken to be the live data that affects customers.

Note also that as per requirement R.03.02.21, the consumer must accept data from the producer that may be
inconsistent for business purposes. This means that a consumer may for example have to store Tariff Associations
that reference Locations by ID that the consumer did not receive yet. This is another good reason for consumer
implementations to separate data as received via OCPI (where consistency for business purposes cannot be enforced)
from a live dataset for business operations (where consistency for business purposes can be enforced).

3.1.2.5. Optimizing throughput with many HTTP requests

OCPI 3.0 subscriptions are designed to be used with modern versions of HTTP and TLS that allow the reuse of TCP
connections and TLS sessions for multiple HTTP requests. OCPI 3.0 uses an HTTP request-response exchange for
every update to a Party Issued Object. Using the HTTP 1.0 connection management pattern where a new TCP
connection is set up for every HTTP request would thus require TCP and TLS handshakes for every Party Issued Object
update. This in turn would be a major overhead for a large CPO who has to send many updates about their charging
stations and charge sessions.

We believe that at the time of writing, there is a good choice of HTTP implementations supporting connection reuse in
all major programming languages. Nevertheless, some HTTP implementations may still choose the inefficient
approach because of legacy or simplicity. We recommend that platform implementers who care about performance
pay attention to this.

3.2. Use Cases

3.2.1. UC: 03.01 - Subscribe to Party Issued Objects of a certain Module of a
certain Party

1 Objective(s) 1. Party X on Platform A starts receiving notifications about Party Issued Objects of a
certain Module from Party Y on Platform B

40

2 Description Platfrom A sends a subscription request to Platform B, stating which Party wants to
subscribe and which Party and Module they want to subscribe to. Platform B answers to
inform Party X and Platform A whether the subscription succeeded.

3 Actors Any

4 Flow 1. Platform A makes a request to Platform B, stating the Party wishing to subscribe, and
the Party and Module that they wish to subscribe to.
2. Platform B responds, indicating if a subscription matching the request was created or
not.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform A serves Party X to Party Y
Platform B serves Party Y to Party X

6 Postconditions Party X on Platform A is subscribed to Party Y on Platform B for the Module given in the
request

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

Subscribe to the Party Issued Objects of a certain Module of a certain Party

PLATFORM A PLATFORM B

We assume as an example that a Party X, with party ID DEPTX is hosted on
Platform A. We also assume that this party wants to subscribe to the Locations
module of a Party Y with party ID FRPTY hosted on Platform B.

POST /ocpi/from/DEPTX/to/FRPTY/locations
+ retry interval
+ parallelism limit

HTTP 200 OK
+ maximum queue size

Figure 13. Sequence Diagram: Subscribe to Party Issued Objects of a certain Module of a certain Party

Table 10. UC: 03.01 Requirements

ID Precondition Requirement

R.03.01.
01

Platform A SHALL make the request to subscribe
following Make a request on behalf of a Party to a Party
on another Platform.

R.03.01.
02

Platform A SHALL obtain the URL to make the GET
request to by appending a path segment separator and
the ModuleID value for the Module to subscribe to as a
relative path as described in the Make a request on
behalf of a Party to a Party on another Platform.

41

ID Precondition Requirement

R.03.01.
03

Platform A SHALL use POST as the HTTP request verb

R.03.01.
04

Platform A SHALL put a SubscriptionRequest object in the
body of its request

R.03.01.
05

Platform B establishes the subscription Platform B SHALL send a response with the status_code
field set to 1000 and a SubscriptionResponse object in
the payload field

R.03.01.
06

Platform B processes the request but does not
establish the subscription

Platform B SHOULD put an OCPI error code from
Subscription error codes in the status_code field of its
response

NOTE

While the parallelism_limit field in the SubscriptionRequest type allows Platforms to make requests in
parallel, it does not require any platform to use parallel processing on a subscription at any time.
Receiver platforms do not have to specify a parallelism_limit greater than 1 and sender platforms are
not required to use parallel requests when they are allowed by the receiver.

NOTE

While the max_queue_size field in the SubscriptionResponse type allows the sender Platform to
cancel a subscription, it does not absolutely require the sender to never let the update queue for a
subscription grow beyond the value of this field. A sender Platform may want to temporarily allow
the queue to grow bigger, for example when initializing a new subscription to a large dataset. The
purpose of the field is to make resource constraints on the sender side visible on the receiver side,
not to constrain the sender in how they use their resources.

3.2.2. UC: 03.02 - Send a full update of a Party Issued Object to a Subscribed
Platform

1 Objective(s) 1. Party X Platform A gets an up-to-date copy of a Platform Issued Object that it is
subscribed to from a Party Y on Platform B

2 Description Platform B sends a message to Platform A with the Platform Issued Object data and a
reference to the subscription under which the data is transferred.

3 Actors Any

4 Flow 1. Platform B makes a request to Platform A, carrying a Party Issued Object’s identifier,
version and representation, and referencing the subscription under which the data is
transferred.

5 Preconditions Party X on Platform A is subscribed to Party Issued Objects from Party Y on Platform B for
a certain Module according to Subscribe to Party Issued Objects of a certain Module of a
certain Party

6 Postconditions Party X on Platform A has updated information on a Party Issued Object from Party Y on
Platform B

7 Error handling Error reporting by Platform A follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

42

8 Remark(s) Where we use "Platform A’s copy of the Party Issued Object" in the requirements below,
we mean the copy of the Party Issued Object that Platform A has obtained through
previous request-response exchanges, as identified by the subscription identity, the issuer
party ID and the object ID

Send a full update of a Party Issued Object to a subscribed Platform

PLATFORM A PLATFORM B

Before this use case, a Party X on Platform A has to subscribe to Party Issued
Objects for a certain module from a Party Y on Platform B.

Let's, for example, assume that a Party X with Party ID PLPTX has subscribed
to Party Issued Objects of the Sessions module from a Party Y with Party ID
SEPTY on Platform B.

POST /ocpi/from/SEPTY/to/PLPTX/session/update
+issuer party of the session
+ID of the session
+version number of the updated session
+updated session object

Platform A looks up the Party Issued Object under the subscription,
the issuer party and object ID.
If found, it updates it;
If not found, it creates it.

HTTP 200 OK

Figure 14. Sequence Diagram: Send a full update of a Party Issued Object to a Subscribed Platform

Table 11. UC: 03.02 Requirements

ID Precondition Requirement

R.03.02.
01

Platform B SHALL make the request to Platform A
following Make a request on behalf of a Party to a Party
on another Platform.

R.03.02.
02

Platform B SHALL make the request to Platform A with
the POST request verb

R.03.02.
03

Platform B SHALL set the sender Party ID in the URL path
of its request to Platform A to the Party ID of the Party
that was subscribed to according to Subscribe to Party
Issued Objects of a certain Module of a certain Party

R.03.02.
04

Platform B SHALL set the receiver Party ID in the URL
path of its request to Platform A to the Party ID of the
Party that subscribed according to Subscribe to Party
Issued Objects of a certain Module of a certain Party

43

ID Precondition Requirement

R.03.02.
05

Platform B SHALL add the ModuleID of the Module that
was subscribed to according to Subscribe to Party Issued
Objects of a certain Module of a certain Party as the first
custom path segment

R.03.02.
06

Platform B SHALL add "update" as the second custom
path segment of the URL path in its request to Platform
A

R.03.02.
07

Platform B SHALL send a PartyIssuedObjectUpdate
object in the request body of the request

R.03.02.
08

The preconditions of R.03.02.12 up to and
including R.03.02.15 do not apply

Platform A SHALL update or create its copy of the Party
Issued Object with the issuer party and ID and Module
from the request body to be the same as the object in
the "payload" field of the request body

R.03.02.
09

Platform A does not have a copy of the Party
Issued Object yet

Platform A SHALL create its copy of the Party Issued
Object with the issuer party and ID and Module of the
request body to be the same as the object in the
"payload" field of the request body

R.03.02.
10

Platform A successfully stored a version of its
copy of the Party Issued object according to
R.03.02.08 or R.03.02.09

Platform A SHALL store that the version of its copy of the
Party Issued Object is that version that is given in the
"version" field of the PartyIssuedObjectUpdate object in
the request body

R.03.02.
11

Platform A successfully updated its version of
the Party Issued Object according to R.03.02.10

Platform A SHALL send a response to Platform B with a
OcpiResponse object in the response body. The
OcpiResponse object SHOULD NOT have a payload and
the value of the "status_code" field SHALL be 1000.

R.03.02.
12

The value of the "version" field in the
PartyIssuedObjectUpdate object in the request
body is smaller than or equal to the version of
Platform A’s copy of the Party Issued Object

Platform A SHALL NOT modify its copy of the Party
Issued Object

R.03.02.
13

Party X on Platform A is not subscribed to Party
Y on Platform B for the Module given in the
URL path of the request

Platform A SHALL send a response to Platform B with the
"status_code" field in the OcpiResponse object set to
6002.

R.03.02.
14

The value of the "version" field in the
PartyIssuedObjectUpdate object in the request
body is smaller than or equal to the version of
Platform A’s copy of the Party Issued Object
and the precondition of R.03.02.11 does not
apply

Platform A SHALL send a response to Platform B with a
OcpiResponse object in the response body. The
OcpiResponse object SHOULD NOT have a payload and
the value of the "status_code" field SHALL be 1000.

R.03.02.
15

The value of the "payload" field in the
PartyIssuedObjectUpdate object in the request
body of the request does not conform to the
schema for the Module and the preconditions
of R.03.02.11 and R.03.02.12 do not apply

Platform A SHALL send a response to Platform B with the
"status_code" field in the OcpiResponse object set to
6001

44

ID Precondition Requirement

R.03.02.
16

Platform B does not get a response that has a
"status_code" field with a value of 1000, 6001
or 6002 from Platform A within the timeout
period that it received from Platform A
according to Handshake OCPI Connection
Parameters

Platform B SHALL retry the update according to Retry an
update of a Party Issued Object to a Subscribed Platform

R.03.02.
17

Platform B SHALL NOT make its POST request to
Platform A while the number of POST requests in
progress made in the context of use case 11 is equal to
or greater than the parallelism limit set for this
subscription by Platform A during use case 10. A request
is considered "in progress" for this requirement if and
only if it has not been responded to by Platform A and
Platform A’s request timeout as given during use case 3
has not elapsed since the request was sent.

R.03.02.
18

Platform B SHALL NOT make its POST request to
Platform A while another POST request is in progress
made in the context of use case 11, for the same
subscription, and with the same Party Issued Object
Party ID and Party Issued Object ID. A request is
considered "in progress" for this requirement if and only
if it has not been responded to by Platform A and
Platform A’s request timeout as given during use case 3
has not elapsed since the request was sent.

R.03.02.
19

Platform A SHALL NOT use the data from the request for
any Party other than the subscribed Party, except when
following use cases 19 or 21 given in this chapter.

R.03.02.
20

Platform B SHALL NOT set the "id" field of the
PartyIssuedObjectUpdate request in the request body to
a string with more than 36 code points, unless it is
making the request to issue a credit CDR according to
Send a Credit CDR.

R.03.02.
21

The payload in the PartyIssuedObjectUPdate
object in the request contains data that is
inconsistent at the business level with other
data that Platform A holds for Party X, like
when the payload object contains dangling
references to other business objects from
other modules that may not yet have been
transferred.

Platform A SHALL NOT report this inconsistency to
Platform B in the response of this use case.

NOTE

Requirement R.03.02.21 should not be taken to mean that Platform A and Party X should not do
business-level validation at all. The point is that Platform A or Party X should not make Platform B’s
update request fail because of such validations. For Party Issued Objects, the sender is the source of
truth. The consumer has to store what the sender sends, even if what the sender sends is nonsense

45

in the receiver’s eyes. For dangling references, like Tariff Associations that reference Locations or
Tariffs that don’t exist in the receiver’s system, the receiver should accept them and try to follow the
references only once they have to be used in business operations. For other types of inconsistencies,
the receiver may contact the sender and seek to receive them using communication methods other
than OCPI.

3.2.3. UC: 03.03 - Retry an update of a Party Issued Object to a Subscribed
Platform

1 Objective(s) 1. Party X Platform A gets an up-to-date copy of a Platform Issued Object that it is
subscribed to from a Party Y on Platform B

2 Description Updates to receiver’s copies of Party Issued Objects, as performed according to use case
Send a full update of a Party Issued Object to a Subscribed Platform, may fail for various
reasons. Reasons for failures include, but are certainly not limited to, network disruptions,
infrastructure malfunction, planned maintenance and software bugs. This use case serves
to make OCPI 3.0 connections recover from such failures without intervention by human
operators. It does so by making the sender retry the update until either the update
succeeds or the whole subscription is terminated due to the sender’s persistent queue
growing beyond its size limit.

3 Actors Any

3 Actors Any

4 Flow 1. Platform B makes a request to Platform A, carrying a Party Issued Object’s identifier,
version and representation, and referencing the subscription under which the data is
transferred.

5 Preconditions Party X on Platform A is subscribed to Party Issued Objects from Party Y on Platform B for
a certain Module according to Subscribe to Party Issued Objects of a certain Module of a
certain Party

6 Postconditions Party X on Platform A has updated information on a Party Issued Object from Party Y on
Platform B

7 Error handling Error reporting by Platform A follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

46

Retry and Update of a Party Issued Object to a Subscribed Platform

PLATFORM A PLATFORM B

Before this use case, a Party X on Platform A has to subscribe to Party Issued
Objects for a certain module from a Party Y on Platform B.

Let's, for example, assume that a Party X with Party ID PLPTX has subscribed
to Party Issued Objects of the Sessions module from a Party Y with Party ID
SEPTY on Platform B.

First, Platform B has to attempt to send a Party Issued Object update to Platform A...

POST /ocpi/from/SEPTY/to/PLPTX/session/update
+issuer party of the session
+ID of the session
+version number of the updated session
+updated session object

notices that the update was not
acknowledged in time by Platform A

waits for the backoff period

Then, Platform B retries with a full update

POST /ocpi/from/SEPTY/to/PLPTX/session/update
+issuer party of the session
+ID of the session
+version number of the updated session
+updated session object

Platform A looks up the Party Issued Object under the subscription,
the issuer party and object ID.
If found, it updates it;
If not found, it creates it.

HTTP 200 OK

Figure 15. Sequence Diagram: Retry an update of a Party Issued Object to a Subscribed Platform

Table 12. UC: 03.03 Requirements

ID Precondition Requirement

R.03.03.
01

Platform B SHALL NOT make an update request
according to Send a Full Update of a Party Issued Object
to a Subscribed Platform for the same subscription, Party
Issued Object Party ID, Party Issued Object ID and Party
Issued Object version until the backoff period has
elapsed. The backoff period is 2 ^ (n - 1) * p seconds,
where n is the number of times an update request for
this party issued object at this version was made without
getting a success response, and p is the subscription’s
retry interval as Platform A gave it to Platform B by
during use case Subscribe to Party Issued Objects of a
certain Module of a certain Party.

47

ID Precondition Requirement

R.03.03.
02

Platform B SHOULD do a full update of the same
subscription, Party Issued Object Party ID, Party Issued
Object ID and Party Issued Object version according to
Send a Full Update of a Party issued Object to a
Subscribed Platform as immediately as possible after the
backoff period has elapsed

R.03.03.
03

Platform B MAY discard the update that it is holding for
the backoff period according to R.03.03.01 after it did a
full update in the same subscription with the same Party
Issued Object Party ID and Party Issued Object ID and a
Party issued Object version that is greater than the Party
Issued Object version in the update that it is holding.

3.2.4. UC: 03.04 - Cancel a Subscription as the Platform receiving data

1 Objective(s) 1. The subscription is terminated and the data receiver Platform no longer receives data
belonging to this subscription

2 Description Once a subscriber Platform loses interest in data they are subscribed to, they will want to
end the subscription and stop receiving data. They can do so by sending a request to
cancel the subscription to the data sender Platform.

3 Actors Any

3 Actors Any

4 Flow 1. Platform A makes a request to Platform B, carrying the parameters identifying the
subscription and the desire to cancel in the URL
2. Platform B stops sending data to Platform A and acknowledges the cancellation in a
response to Platform A

5 Preconditions Party X on Platform A is subscribed to Party Issued Objects from Party Y on Platform B for
a certain Module according to Subscribe to Party Issued Objects of a certain Module of a
certain Party

6 Postconditions Party X on Platform A is not subscribed to Party Issued Objects from Party Y on Platform B
for a certain Module according to Subscribe to Party Issued Objects of a certain Module of
a certain Party

7 Error handling Error reporting by Platform A follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

48

Cancel a Subscription as as the Platform receiving data

PLATFORM A PLATFORM B

We assume as an example that a Party X, with party ID DEPTX is hosted on
Platform A. We also assume that this party is subscribed to the Locations
module of a Party Y with party ID FRPTY hosted on Platform B.

POST /ocpi/from/DEPTX/to/FRPTY/locations/cancel-my-subscription

stops sending updates of
FRPTY's Locations to DEPTX on Platform A

HTTP 200 OK

Figure 16. Sequence Diagram: Cancel a Subscription as the Platform receiving data

Table 13. UC: 03.04 Requirements

ID Precondition Requirement

R.03.04.
01

Platform A SHALL make the request to Platform B
following Make a request on behalf of a Party to a Party
on another Platform.

R.03.04.
02

Platform A SHALL obtain the URL to make the GET
request to by appending as path segments the ModuleID
value for the subscription to cancel and the string
"cancel-my-subscription" to the path as described in the
Make a request on behalf of a Party to a Party on
another Platform.

R.03.04.
03

Platform A SHALL use POST as the HTTP request verb

R.03.04.
04

Platform A SHALL NOT put a request body in its request

R.03.04.
05

Platform B can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL

Platform B SHALL NOT begin with use case 12 for that
subscription after sending its response to Platform A’s
cancellation request

R.03.04.
06

Platform B can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL

Platform B SHOULD discard updates that are waiting for
a backoff period according to Retry an update of a Party
Issued Object to a Subscribed Platform

R.03.04.
06

Platform B can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL

Platform B SHALL send a response with the status_code
field set to 1000

R.03.04.
08

Platform B cannot find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL

Platform B SHALL send a response with the status_code
field set to 5005

49

3.2.5. UC: 03.05 - Cancel a Subscription as the Platform sending data

1 Objective(s) 1. The subscription is terminated and the data receiver Platform no longer receives data
belonging to this subscription

2 Description Once a data sender Platform is no longer able to deliver the data that another Platform
subscribed to them for, they will want to end the subscription so that the data receiver
Platform knows they will no longer receive updates and their copy of the data is becoming
stale. The data sender Platform can do this by sending a request to cancel the subscription
to the data receiver Platform.

3 Actors Any

3 Actors Any

4 Flow 1. Platform B stops sending data updates to Platform A in the context of the subscription
2. Platform B makes a request to Platform A, carrying the parameters identifying the
subscription and the desire to cancel in the URL

5 Preconditions Party X on Platform A is subscribed to Party Issued Objects from Party Y on Platform B for
a certain Module according to Subscribe to Party Issued Objects of a certain Module of a
certain Party

6 Postconditions Party X on Platform A is not subscribed to Party Issued Objects from Party Y on Platform B
for a certain Module according to Subscribe to Party Issued Objects of a certain Module of
a certain Party

7 Error handling Error reporting by Platform A follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

Cancel a Subscription as as the Platform sending data

PLATFORM A PLATFORM B

We assume as an example that a Party X, with party ID DEPTX is hosted on
Platform A. We also assume that this party is subscribed to the Locations
module of a Party Y with party ID FRPTY hosted on Platform B.

Platform B stops sending further updates
about FRPTY's Locations to Party DEPTX on Platform A

POST /ocpi/from/FRPTY/to/DEPTX/locations/cancel-your-subscription
+ cancellation reason

HTTP 200 OK

Figure 17. Sequence Diagram: Cancel a Subscription as the Platform sending data

Table 14. UC: 03.05 Requirements

ID Precondition Requirement

R.03.05.
01

Platform B SHALL make the request to Platform A
following Make a request on behalf of a Party to a Party
on another Platform.

50

ID Precondition Requirement

R.03.05.
02

Platform B SHALL obtain the URL to make the GET
request to by appending as path segments the ModuleID
value for the subscription to cancel and the string
"cancel-your-subscription" to the path as described in the
Make a request on behalf of a Party to a Party on
another Platform.

R.03.05.
03

Platform B SHALL use POST as the HTTP request verb

R.03.05.
04

Platform B SHALL put a SubscriptionCancellation object
in the body of its request

R.03.05.
05

Platform A can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL

Platform A SHALL send a response with the status_code
field set to 1000

R.03.05.
08

Platform A cannot find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL

Platform A SHALL send a response with the status_code
field set to 5005

R.03.05.
09

Platform B SHALL NOT begin with use case 12 for the
subscription being cancelled after sending its
cancellation request to Platform A

3.2.6. UC: 03.06 - Check subscription state on sender side as the platform
receiving data

1 Objective(s) 1. The receiving platform gets to know how many updates the sending platform is
queuing for them

2 Description A receiving platform may want to check that they are not behind on processing updates
and that they are not using a lot of the sending platform’s storage space. Therefore they
can request the state of the subscription at the sender.

3 Actors Any

3 Actors Any

4 Flow 1. Platform A requests the state of a certain subscription from Platform B
2. Platform B responds to Platform A, with the subscription state in the response

5 Preconditions Party X on Platform A is subscribed to Party Issued Objects from Party Y on Platform B for
a certain Module according to Subscribe to Party Issued Objects of a certain Module of a
certain Party

6 Postconditions None in particular

7 Error handling Error reporting by Platform A follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

51

8 Remark(s) The data in the response from Platform B may be outdated by the time Platform A
receives them.

Check subscription state on sender side as the platform receiving data

PLATFORM A PLATFORM B

Before this use case, a Party X on Platform A has to subscribe to Party Issued
Objects for a certain module from a Party Y on Platform B.

Let's, for example, assume that a Party X with Party ID PLPTX has subscribed
to Party Issued Objects of the Sessions module from a Party Y with Party ID
SEPTY on Platform B.

GET /ocpi/from/PLPTX/to/SEPTY/sessions/state

HTTP 200 OK
+number of updates queued in the persistent queue for the subscription
+ maximum queue size for the subscription
+ retry interval for the subscription

Figure 18. Sequence Diagram: Check subscription state on sender side as the platform receiving data

Table 15. UC: 03.06 Requirements

ID Precondition Requirement

R.03.06.
01

Platform A SHALL make the request for the subscription
state following Make a request on behalf of a Party to a
Party on another Platform.

R.03.06.
02

Platform A SHALL obtain the URL to make the GET
request to by appending to the URL path as described in
Make a request on behalf of a Party to a Party on
another Platform: a path segment separator, the
ModuleID value for the Module of the subscription,
another path segment separator, and the string "state"
as a last segment.

R.03.06.
03

Platform A SHALL use GET as the HTTP request verb.

R.03.06.
04

Platform B indeed has a subscription where it
is the subscription’s sender platform, the
receiver party of the GET request URL is the
subscription’s sender party, Platform A is the
subscription’s receiver platform and the sender
party of the GET request URL is the
subscription’s receiver party

Platform B SHALL send a response with the status_code
field set to 1000 and a SubscriptionState object in the
payload field.

52

ID Precondition Requirement

R.03.06.
05

Platform B does not have a subscription where
it is the subscription’s sender platform, the
receiver party of the GET request URL is the
subscription’s sender party, Platform A is the
subscription’s receiver platform and the sender
party of the GET request URL is the
subscription’s receiver party

Platform B SHALL send a response with the status_code
field set to 5005.

3.2.7. UC: 03.07 - Renegotiate Subscription Parameters as the Platform
receiving data

1 Objective(s) A platform subscribed to another platform gets the sender platform to agree to a new set
of parameters for a subscription.

2 Description Sometimes, due to changes in data volumes or business requirements or available
computing resources, platforms will want to change the parameters for a subscription.
This use case lets the receiving platform in the subscription take the initiative to do so.

3 Actors Any

3 Actors Any

4 Flow 1. Platform A makes a request to Platform B, carrying the parameters identifying the
subscription and the desire to renegotiate parameters in the URL, and carrying the
proposed new parameters in the request body.
2. Platform B responds, indicating in the response body if it agrees to the new parameters
or not.

5 Preconditions Party X on Platform A is subscribed to Party Issued Objects from Party Y on Platform B for
a certain Module according to Subscribe to Party Issued Objects of a certain Module of a
certain Party

6 Postconditions One of:
1. Platform A and and Platform B agreed new parameters for a subscription between
them; or
2. Platform A knows that Platform B did not agree to Platform A’s proposed new
subscription parameters.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

53

Renegotiate subscription parameters as the platform receiving data

PLATFORM A PLATFORM B

We assume as an example that a Party X, with party ID DEPTX is hosted on
Platform A. We also assume that this party is subscribed to the Locations
module of a Party Y with party ID FRPTY hosted on Platform B.

POST /ocpi/from/DEPTX/to/FRPTY/locations/renegotiate-my-subscription
+ parallelism_limit
+ retry_interval
+ max_queue_size

HTTP 200 OK
+ status_code: 1000
+ data: ACCEPTED

applies the new subscription parameters sent by Platform A

Figure 19. Sequence Diagram: Renegotiate Subscription Parameters as the Platform receiving data

Table 16. UC: 03.07 Requirements

ID Precondition Requirement

R.03.07.
01

Platform A SHALL make the request to Platform B
following Make a request on behalf of a Party to a Party
on another Platform.

R.03.07.
02

Platform A SHALL obtain the URL to make the GET
request to by appending as path segments the ModuleID
value for the subscription to cancel and the string
"renegotiate-my-subscription" to the path as described in
the Make a request on behalf of a Party to a Party on
another Platform.

R.03.07.
03

Platform A SHALL use POST as the HTTP request verb

R.03.07.
04

Platform A SHALL put a SubscriptionParameterProposal
object in the request body in its request

R.03.07.
05

Platform B cannot find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL.

Platform B SHALL send a response with the status_code
field set to 5005.

R.03.07.
06

Platform B can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL and is willing and
able to change the subscription parameters as
proposed in the request by Platform A.

Platform B SHALL send a response with the status_code
field set to 1000 and the data field set to ACCEPTED.

R.03.07.
07

Platform B can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL and is willing and
able to change the subscription parameters as
proposed in the request by Platform A.

Platform B SHALL start applying the new subscription
parameters for new instances of the Send a Full Update
of a Party Issued Object to a Subscribed Platform for this
subscription.

54

ID Precondition Requirement

R.03.07.
08

Platform B can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL and is not willing or
able to change the subscription parameters as
proposed in the request by Platform A.

Platform B SHALL send a response with the status_code
field set to 1000 and the data field set to REJECTED.

R.03.07.
09

Platform B can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL and is not willing or
able to change the subscription parameters as
proposed in the request by Platform A.

Platform B SHALL keep applying the previously agreed
subscription parameters for new instances of the Send a
Full Update of a Party Issued Object to a Subscribed
Platform for this subscription.

3.2.8. UC: 03.08 - Renegotiate Subscription Parameters as the Platform
sending data

1 Objective(s) A platform that another platform subscribed to gets the receiver platform to agree to a
new set of parameters for a subscription.

2 Description Sometimes, due to changes in data volumes or business requirements or available
computing resources, platforms will want to change the parameters for a subscription.
This use case lets the sending platform in the subscription take the initiative to do so.

3 Actors Any

3 Actors Any

4 Flow 1. Platform B makes a request to Platform A, carrying the parameters identifying the
subscription and the desire to renegotiate parameters in the URL, and carrying the
proposed new parameters in the request body.
2. Platform A responds, indicating in the response body if it agrees to the new parameters
or not.

5 Preconditions Party X on Platform A is subscribed to Party Issued Objects from Party Y on Platform B for
a certain Module according to Subscribe to Party Issued Objects of a certain Module of a
certain Party

6 Postconditions One of:
1. Platform A and and Platform B agreed new parameters for a subscription between
them; or
2. Platform B knows that Platform A did not agree to Platform B’s proposed new
subscription parameters.

7 Error handling Error reporting by Platform A follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

55

Renegotiate subscription parameters as as the Platform sending data

PLATFORM A PLATFORM B

We assume as an example that a Party X, with party ID DEPTX is hosted on
Platform A. We also assume that this party is subscribed to the Locations
module of a Party Y with party ID FRPTY hosted on Platform B.

POST /ocpi/from/FRPTY/to/DEPTX/locations/renegotiate-your-subscription
+ parallelism_limit
+ retry_interval
+ max_queue_size

HTTP 200 OK
+ status_code: 1000
+ data: ACCEPTED

applies the new subscription parameters sent by Platform B

Figure 20. Sequence Diagram: Renegotiate Subscription Parameters as the Platform sending data

Table 17. UC: 03.08 Requirements

ID Precondition Requirement

R.03.08.
01

Platform B SHALL make the request to Platform A
following Make a request on behalf of a Party to a Party
on another Platform.

R.03.08.
02

Platform B SHALL obtain the URL to make the GET
request to by appending as path segments the ModuleID
value for the subscription to cancel and the string
"renegotiate-your-subscription" to the path as described
in the Make a request on behalf of a Party to a Party on
another Platform.

R.03.08.
03

Platform B SHALL use POST as the HTTP request verb

R.03.08.
04

Platform B SHALL put a SubscriptionParameterProposal
object in the request body in its request

R.03.08.
05

Platform A cannot find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL.

Platform A SHALL send a response with the status_code
field set to 5005.

R.03.08.
06

Platform A can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL and is willing and
able to change the subscription parameters as
proposed in the request by Platform B.

Platform A SHALL send a response with the status_code
field set to 1000 and the data field set to ACCEPTED.

56

ID Precondition Requirement

R.03.08.
07

Platform A can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL and is willing and
able to change the subscription parameters as
proposed in the request by Platform B.

Platform A SHALL start applying the new subscription
parameters for new instances of the Send a Full Update
of a Party Issued Object to a Subscribed Platform for this
subscription.

R.03.08.
08

Platform A can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL and is not willing or
able to change the subscription parameters as
proposed in the request by Platform B.

Platform A SHALL send a response with the status_code
field set to 1000 and the data field set to REJECTED.

R.03.08.
09

Platform A can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL and is not willing or
able to change the subscription parameters as
proposed in the request by Platform B.

Platform A SHALL keep applying the previously agreed
subscription parameters for new instances of the Send a
Full Update of a Party Issued Object to a Subscribed
Platform for this subscription.

3.2.9. UC: 03.09 - Request immediate retry of all pending updates for a
Subscription

1 Objective(s) A platform subscribed to another platform gets the sender platform to immediately retry
all its updates that are waiting to be retried.

2 Description Sometimes Party Issued Object updates will fail to be delivered for a clearly identifiable,
temporary pattern of failure, like a network outage or a broken version of software being
deployed on the receiver Platform. In such case, once this temporary pattern of failure has
been fixed, the receiver platform will want to process the updates to be retried as soon as
possible, rather than wait for their retry periods to expire. Retry periods can become quite
long after repeated failures due to the exponential backoff, and this use case gives the
receiver Platform a way to quickly catch up again.

3 Actors Any

3 Actors Any

4 Flow 1. Platform A makes a request to Platform B, carrying the parameters identifying the
subscription and the desire to have all pending updates retried as soon as possible within
the parallelism limit of the subscription and the computing resources available to Platform
B.
2. Platform B retries all pending updates for the subscription.

5 Preconditions Party X on Platform A is subscribed to Party Issued Objects from Party Y on Platform B for
a certain Module according to Subscribe to Party Issued Objects of a certain Module of a
certain Party

6 Postconditions None are guaranteed.

57

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s) Note that the request from Platform A allows Platform B to send the updates sooner than
backoff requires, but does not oblige Platform B to do anything beyond sending a
response to the request. Platform B can disregard the request, for example if it has
already spent to many resources on retrying updates to Platform A, or if it just hasn’t
implemented the logic for cancelling the backoff wait.

Request immediate retry of all pending updates for a subscription

PLATFORM A PLATFORM B

We assume as an example that a Party X, with party ID CAPTX is hosted on
Platform A. We also assume that this party is subscribed to the CDRs
module of a Party Y with party ID USPTY hosted on Platform B.

POST /ocpi/from/CAPTX/to/USPTY/cdrs/request-immediate-retries

HTTP 200 OK

retries CDR updates to CAPTX that were waiting for backoff,
as quickly as possible within parallelism_limit
and Platform B's computing resources

Figure 21. Sequence Diagram: Request immediate retry of all pending updates for a Subscription

Table 18. UC: 03.09 Requirements

ID Precondition Requirement

R.03.09.
01

Platform A SHALL make the request to Platform B
following Make a request on behalf of a Party to a Party
on another Platform.

R.03.09.
02

Platform A SHALL obtain the URL to make the GET
request to by appending as path segments the ModuleID
value for the subscription to request immediate retries
for and the string "request-immediate-retries" to the
path as described in the Make a request on behalf of a
Party to a Party on another Platform.

R.03.09.
03

Platform A SHALL use POST as the HTTP request verb

R.03.09.
04

Platform B cannot find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL.

Platform B SHALL send a response with the status_code
field set to 5005.

R.03.09.
05

Platform B can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL.

Platform B SHALL send a response with the status_code
field set to 1000.

58

ID Precondition Requirement

R.03.09.
06

Platform B can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL.

Platform B MAY make update requests according to Send
a Full Update of a Party Issued Object to a Subscribed
Platform for combinations of subscription, Party Issued
Object Party ID, Party Issued Object ID and Party Issued
Object version, such that the subscription is the
subscription found according to the precondition, and
such that Platform B was waiting for a backoff period
according to R.03.03.01. Platform B may make these
requests without waiting for the rest of the backoff
period after it received Platform A’s request.

3.2.10. UC: 03.10 - Request full update of a certain Party Issued Object

1 Objective(s) A platform subscribed to another platform gets the sender platform to send it a full
update of a certain Party Issued Object.

2 Description When a receiver Platform is not sure that they have the latest version of a Party Issued
Object, they can request the sender Platform to send it to them according to this use case.

3 Actors Any

3 Actors Any

4 Flow 1. Platform A makes a request to Platform B, carrying the parameters identifying the
subscription and the Party Issued Object to send an update for.
2. Platform B sends a full update of this Party Issued Object to Platform A.

5 Preconditions Party X on Platform A is subscribed to Party Issued Objects from Party Y on Platform B for
a certain Module according to Subscribe to Party Issued Objects of a certain Module of a
certain Party

6 Postconditions One of:
* Party X on Platform A is going to receive a full update of the Party Issued Object that
they identified in their request from Party Y on Platform B; or
* Party X on Platform A knows that Party Y on Platform B will not send them a full update,
and they know why they will not get such update.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

59

Request full update of a certain Party Issued Object

PLATFORM A PLATFORM B

We assume as an example that a Party X, with party ID CAPTX is hosted on
Platform A. We also assume that this party is subscribed to the CDRs
module of a Party Y with party ID USPTY hosted on Platform B.

POST /ocpi/from/CAPTX/to/USPTY/cdrs/request-full-update
+ CDR ID 4c91ecdd-a75a-4459-832f-f62b33648dca

Schedules a full update of CDR
4c91ecdd-a75a-4459-832f-f62b33648dca to
be sent to CAPTX

HTTP 200 OK

Figure 22. Sequence Diagram: Request full update of a certain Party Issued Object

Table 19. UC: 03.10 Requirements

ID Precondition Requirement

R.03.10.
01

Platform A SHALL make the request to Platform B
following Make a request on behalf of a Party to a Party
on another Platform.

R.03.10.
02

Platform A SHALL obtain the URL to make the GET
request to by appending as path segments the ModuleID
value for the subscription to cancel and the string
"request-full-update" to the path as described in the
Make a request on behalf of a Party to a Party on
another Platform.

R.03.10.
03

Platform A SHALL use POST as the HTTP request verb

R.03.10.
04

Platform A SHALL put a PartyIssuedObjectReference
object in the request body in its request

R.03.10.
05

Platform B cannot find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL.

Platform B SHALL send a response with the status_code
field set to 5005.

R.03.10.
06

Platform B can find a subscription as described
in the precondition of R.03.10.05 but cannot
find a Party Issued Object issued within the
context of this subscription with the ID given in
the request body by Platform A.

Platform B SHALL send a response with the status_code
field set to 5006.

R.03.10.
07

Platform B can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL, and also issued an
object with the ID given in the request to Party
X in the context of this subscription.

Platform B SHALL send a response with the status_code
field set to 1000.

60

ID Precondition Requirement

R.03.10.
08

Platform B can find a subscription with
Platform A as the receiver platform, Platform B
as the sender platform, and the parties and
ModuleID given in the URL, and also issued an
object with the ID given in the request to Party
X in the context of this subscription.

Platform B SHALL send a Party Issued Object update for
the latest version of the object with the ID given in
Platform A’s request, issued in the context of the
subscription described in the precondition, as soon as
Platform B has computing resources available to do so.

3.2.11. UC: 03.11 - Subscribe to Party Issued Objects of a certain Module of a
certain Party as a Hub

1 Objective(s) 1. Platform A starts receiving notifications about Party Issued Objects of a certain Module
from Party Y on Platform B. The notifications are addressed to Platform A’s hub party ID.
Platform A uses these notifications to provide data on Party Y’s Party Issued Objects to all
the parties that Platform A serves to Platform B.

2 Description When a Party with a self-hosted Platform connects to a Hub, they will typically want to
send their Party Issued Objects to the Hub once and have the Hub distribute them to
Parties on other Platforms connected to the Hub. This use case allows for that to happen.

3 Actors Roaming Hub

4 Flow 1. Platform A makes a request to Platform B, giving the Party and Module that they wish to
subscribe to, and giving the Hub Party as the Party wishing to subscribe
2. Platform B responds, indicating if a subscription matching the request was created or
not.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform A offers Hub functionality to Platform B
Platform B serves Party Y to Platform A

6 Postconditions Platform A’s Hub is subscribed to Party Y on Platform B for the Module given in the
request

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s) In a typical scenario, Platform A would be a platform operated by a Roaming Hub and
Platform B would be platform operated by a CPO, eMSP or similar self-hosting market
party.
This use case corresponds to Broadcast Push in OCPI 2.2.1 and 2.2, although the technical
implementation is quite different because the initiative for the exchange has moved from
the data producer to the data consumer.
Typically, Hubs will give a self-hosting party connecting to them the ability to configure, in
a web portal or such, which Parties the Hub’s Platform serves to the connected self-hosted
Platform. So indirectly the self-hosting company (Platform B) still decides who has access
to their data, although they have to trust the Roaming Hub (the operator of Platform A) to
enforce their decisions.

61

Subscribe to the Party Issued Objects of a certain Module of a certain Party as a Hub

PLATFORM A PLATFORM B

We assume as an example that NLRHB is the Hub Party ID of Platform A.
We also assume that this Roaming Hub wants to subscribe to the Locations module
of a Party Y with party ID FRPTY hosted on Platform B, to share the
data on Party Y's Locations with all Parties on Platform A that Platform A
serves to Platform B.

First, Platform B learns Platform A's Hub ID when it requests the Parties
served by Platform A according to Use Case "Request Parties served by Platform"

GET /ocpi/parties

parties served to Platform B by Platform A
including the Roaming Hub Party NLRHB

Then, according to the requirements of this use case, Platform A's Roaming
Hub Party subscribes to Party Y's Locations module

POST /ocpi/from/NLRHB/to/FRPTY/locations
+ retry interval
+ parallelism limit

HTTP 200 OK
+ maximum queue size

Now, Platform A receives updates on Party Y's data that it can use for
all parties that Platform A serves to Platform B

push data according to use cases "Send a full
update of a Party Issued Object to a Subscribed
Platform" and "Send a partial update
of a Party Issued Object to a Subscribed
Platform"

Figure 23. Sequence Diagram: Subscribe to Party Issued Objects of a certain Module of a certain Party as a Hub

Table 20. UC: 03.11 Requirements

ID Precondition Requirement

R.03.11.
01

Platform A SHALL make the request to subscribe
following Subscribe to Party Issued Objects of a certain
Module of a certain Party.

R.03.11.
02

Platform A SHALL use the Hub Party ID it provided to
Platform B using the Request Parties served by Platform
as the sender Party ID in the request URL according to
Make a Request to a Party on behalf of a Party.

R.03.11.
03

Platform B will not share Party Y’s data of the
Module given in the request with all Parties
that Platform A serves to Platform B

Platform B SHALL send a response with the status_code
field set to 5002

R.03.11.
04

Platform B is willing to share Party Y’s data of
the Module given in the request with all Parties
that Platform A serves to Platform B

Platform B MAY set up the subscription and notify
Platform A of it according to Subscribe to Party Issued
Objects of a certain Module of a certain Party

62

ID Precondition Requirement

R.03.11.
05

Platform B set up a subscription according to
R.03.11.04

Platform B MAY send updates of Party Issued Objects of
Party Y to Platform A according to Send a full update of a
Party Issued Object to a subscribed Platform, using
Platform A’s Hub Party ID as the receiver party ID in the
request URLs.

R.03.11.
06

Platform A receives updates of Party Issued
Objects of Party Y addressed to its Hub Party ID
as described in R.03.11.05

Platform A MAY use this data for all Parties that it serves
to Platform B in exception to requirement the data
privacy requirement for subscriptions.

3.2.12. UC: 03.12 - Subscribe to Party Issued Objects of a certain Module of a
Hub

1 Objective(s) 1. Party X on Platform A starts receiving notifications about Party Issued Objects of all
parties that Platform B serves to Platform A.

2 Description When a Party with a self-hosted Platform connects to a Hub, they will typically want to
receive the data of all other Parties that are connected to the Hub and that they have a
contract with. This use case allows them to do that with a single subscription, instead of
subscribing to each party on Platform B individually.

3 Actors Any

4 Flow 1. Platform A makes a request to Platform B, giving the Module that they wish to subscribe
to and the Party ID of the Party that is subscribing, and giving the Hub Party as the Party
ID to be subscribed to
2. Platform B responds, indicating if a subscription matching the request was created or
not.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B offers Hub functionality to Platform A
Platform A serves Party X to Platform B

6 Postconditions Party X on Platform A is subscribed to the Roaming Hub of Platform B for the Module
given in the request

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s) In a typical scenario, Platform B would be a platform operated by a Roaming Hub and
Platform A would be platform operated by a CPO, eMSP or similar self-hosting market
party.
This use case corresponds to the functionality called "GET All via Hubs" in OCPI 2.2.1 and
2.2
Typically, Hubs will give a self-hosting party connecting to them the ability to configure, in
a web portal or such, which Parties the Hub’s Platform serves to the connected self-hosted
Platform. So indirectly the self-hosting company (Platform A) still decides whose data they
will get pushed, although they have to trust the Roaming Hub (the operator of Platform B)
to enforce their decisions.

63

Subscribe to the Party Issued Objects of a certain Module of a Hub

PLATFORM A PLATFORM B

We assume as an example that CARHB is the Hub Party ID of Platform B.
We assume that there is a Party BEPTX on Platform A that wants to
receive updates of all Tokens issued by Parties served to Platform A
by Platform B.

First, Platform A learns Platform B's Hub ID when it requests the Parties
served by Platform B according to Use Case "Request Parties served by Platform"

GET /ocpi/parties

parties served to Platform A by Platform B
including the Roaming Hub Party CARHB

Then, according to the requirements of this use case, Party BEPTX on
Platform A subscribes to the Tokens module of Platform B's Roaming Hub Party

POST /ocpi/from/BEPTX/to/CARHB/tokens
+ retry interval
+ parallelism limit

HTTP 200 OK
+ maximum queue size

Now, Party X on Platform A receives updates on the tokens of all Parties that
Platform B serves to Platform A and that Platform B has permission to share
with Party X

push token data according to use cases "Send a full
update of a Party Issued Object to a Subscribed
Platform" and "Send a partial update
of a Party Issued Object to a Subscribed
Platform"

Figure 24. Sequence Diagram: Subscribe to Party Issued Objects of a certain Module of a Hub

Table 21. UC: 03.12 Requirements

ID Precondition Requirement

R.03.12.
01

Platform A SHALL make the request to subscribe
following Subscribe to Party Issued Objects of a certain
Module of a certain Party.

R.03.12.
02

Platform A SHALL use the Hub Party ID that Platform B
provided to it using the Request Parties served by
Platform as the receiver Party ID in the request URL
according to Make a Request to a Party on behalf of a
Party.

64

ID Precondition Requirement

R.03.12.
03

Platform B set up a subscription in response to
Platform A’s request according to Subscribe to
Party Issued Objects of a certain Module of a
certain Party

Platform B MAY send, to Party X on Platfrom A, updates
of Party Issued Objects of any Party that Platform B
serves to Platform A according to Send a full update of a
Party Issued Object to a subscribed Platform using
Platform B’s Hub Party ID as the sender party ID in the
request URLs.

NOTE

R.03.12.03 entails that Platform B may send to Platform A updates of Party Issued Objects that were
issued by a Party ID that Platform A has never encountered before. Platform A should be designed
to handle such updates appropriately. Platform A may, for example, want to not use such objects in
automated business processes for Party X until a human operator has confirmed that the object
belongs to a Party that Party X has the appropriate contracts with.

3.2.13. UC: 03.13 - Subscribe to Party Issued Objects of a certain Module of a
Hub as a Hub

1 Objective(s) 1. Platform A can serve all Parties that Platform B serves to it to other Platforms

2 Description Use cases 19 and 20 lend themselves to being used in combination and the possibility
alone prompts the specification to say what should happen in that case. It indeed seems a
useful possibility in case two Roaming Hubs, each operating their own Platform, would
want to link up and open their roaming networks to each others' customers.

3 Actors Roaming Hub

4 Flow 1. Platform A makes a request to Platform B, giving the Module that they wish to subscribe
to, giving its own Roaming Hub ID as the Party ID of the Party that is subscribing, and
giving Platform B’s Hub Party ID as the Party ID of the Party to be subscribed to
2. Platform B responds, indicating if a subscription matching the request was created or
not.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform A offers Hub functionality to Platform B
Platform B offers Hub functionality to Platform A

6 Postconditions The Roaming Hub of Platform A is subscribed to the Roaming Hub of Platform B for the
Module given in the request

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s) No equivalent functionality is available in the Roaming Hub support of OCPI 2.2.1 and 2.2
Roaming Hubs using this use case would have to guard against creating feedback loops of
updates going back and forth. Proper implementation of update versioning should keep
feedback loops from forming. Implementing routing tables might reduce even more
unnecessary traffic in such a case.

65

Subscribe to the Party Issued Objects of a certain Module of a Hub as a Hub

PLATFORM A PLATFORM B

We assume as an example that NLRHB is the Hub Party ID of Platform A.
We also assume that CARHB is the Hub Party ID of Platform B.
We also assume that Platform A's Roaming Hub wants to serve the Locations
of Parties that are hosted by Platform B to other Platforms that are
connected to Platform A.

Before the use case proper begins, Platform A learns Platform B's Hub ID when it requests the Parties
served by Platform B according to Use Case "Request Parties served by Platform"

GET /ocpi/parties

parties served to Platform A by Platform B
including the Roaming Hub Party CARHB

Before the use cases proper begins, Platform B learns Platform A's Hub ID when it requests the Parties
served by Platform A according to Use Case "Request Parties served by Platform"

GET /ocpi/parties

parties served to Platform B by Platform A
including the Roaming Hub Party NLRHB

Then, according to the requirements of this use case, Platform A's Roaming
Hub Party subscribes to the Locations module of Platform B's Roaming Hub Party

POST /ocpi/from/NLRHB/to/CARHB/locations
+ retry interval
+ parallelism limit

HTTP 200 OK
+ maximum queue size

Now, Platform A receives updates on Locations objects issued by any Party on
Platform B that Platform B has the permission to share with Platform A's
Roaming Hub.
Platform A can use the data in these updates for all parties that Platform A
serves to Platform B.

push data according to use cases "Send a full
update of a Party Issued Object to a Subscribed
Platform" and "Send a partial update
of a Party Issued Object to a Subscribed
Platform"

Figure 25. Sequence Diagram: Subscribe to Party Issued Objects of a certain Module of a Hub as a Hub

Table 22. UC: 03.13 Requirements

ID Precondition Requirement

R.03.13.
01

Platform A SHALL make the request to subscribe
following Subscribe to Party Issued Objects of a certain
Module of a certain Party.

66

ID Precondition Requirement

R.03.13.
02

Platform A SHALL use the Hub Party ID that Platform B
provided to it using the Request Parties served by
Platform as the receiver Party ID in the request URL
according to Make a Request to a Party on behalf of a
Party.

R.03.13.
03

Platform A SHALL use the Hub Party ID it provided to
Platform B using the Request Parties served by Platform
as the sender Party ID in the request URL according to
Make a Request to a Party on behalf of a Party.

R.03.13.
04

Platform B will not share the data of the
Module given in the request of all Parties that it
serves to Platform A with all Parties that
Platform A serves to Platform B

Platform B SHALL send a response with the status_code
field set to 5002

R.03.13.
05

Platform B is willing to share the data of the
Module given in the request of all Parties that it
serves to Platform A with all Parties that
Platform A serves to Platform B

Platform B MAY set up the subscription and notify
Platform A of it according to Subscribe to Party Issued
Objects of a certain Module of a certain Party

R.03.13.
06

Platform B set up a subscription according to
R.03.13.04

Platform B MAY send to Platform A updates of Party
Issued Objects of any Party that it serves to Platform A
according to Send a full update of a Party Issued Object
to a subscribed Platform, using Platform A’s Hub Party ID
as the receiver party ID in the request URLs and using
Platform B’s Hub Party ID as the sender party ID in the
request URLs.

R.03.13.
07

Platform A receives updates of Party Issued
Objects addressed to its Hub Party ID as
described in R.03.13.06

Platform A MAY use this data for all Parties that it serves
to Platform B in exception to requirement the data
privacy requirement for subscriptions.

3.3. Object types for Party Issued Objects use cases

3.3.1. PartyIssuedObjectReference class

Property Type Cardi
nalit
y

Description

id CiAsciiString[1..39] 1 An identifier that uniquely identifies this Party Issued Object
among other objects issued for the same module by the same
party.

3.3.2. PartyIssuedObjectUpdate class

67

Property Type Cardi
nalit
y

Description

issuer_party PartyID 1 The party ID of the party that issued this object

id CiAsciiString[1..39] 1 An identifier that uniquely identifies this Party Issued Object
among other objects issued for the same module by the same
party.

version int 1 The version of the Party Issued Object that is in the payload field

payload object 1 The representation of the Party Issued Object at the version
given in the version field

3.3.3. SubscriptionCancellation class

Property Type Cardi
nalit
y

Description

reason SubscriptionCancell
ationReason

1 The reason for cancelling the subscription

3.3.4. SubscriptionCancellationReason enum

Value Description

QUEUE_OVERFLOW The number of queued updates has exceeded the maximum size of the persistent queue
on the data sender Platform

DATA_NO_LONGER_AVAI
LABLE

The party that was subscribed to is no longer hosted on the Platform that was
subscribed to, or they are no longer acting as a sender for the module that was
subscribed to

OTHER A generic code for any other reason for the data sender to cancel the subscription

3.3.5. SubscriptionParameterProposal class

Property Type Cardinality Description

retry_interval number 1 The proposed number of
seconds that the sender
Platform SHOULD wait
before retrying a request
for this subscription the
first time

68

Property Type Cardinality Description

parallelism_limit int ? The proposed maximum
number of requests that
are not yet responded to
and have not yet timed out
that the sender Platform is
allowed to have made to
the receiver Platform for
this particular subscription
at any one time. If this field
is not given, the sender
Platform SHALL act as if the
value of 1 was provided.

max_queue_size int 1 The proposed maximum
number of updates to Party
Issued Objects that the
sender will queue for the
receiver for this particular
subscription

3.3.6. SubscriptionRenegotiationStatus enum

Value Description

ACCEPTED The proposed subscription parameters have been accepted and will take effect for
subsequent Party Issued Object updates in the subscription.

REJECTED The proposed subscription parameters have been rejected and will not take effect for
subsequent Party Issued Object updates in the subscription.

3.3.7. SubscriptionRequest class

Property Type Cardi
nalit
y

Description

retry_interval number 1 The number of seconds that the sender Platform SHOULD wait
before retrying a request for this subscription the first time

parallelism_limit int ? The maximum number of requests that are not yet responded
to and have not yet timed out that the sender Platform is
allowed to have made to the receiver Platform for this particular
subscription at any one time. If this field is not given, the sender
Platform SHALL act as if the value of 1 was provided.

max_queue_size int 1 The maximum number of updates to Party Issued Objects that
the sender promises to queue for the receiver for this particular
subscription

69

3.3.8. SubscriptionResponse class

Property Type Cardi
nalit
y

Description

max_queue_size int 1 The maximum number of updates to Party Issued Objects that
the sender promises to queue for the receiver for this particular
subscription

3.3.9. SubscriptionState class

Property Type Cardi
nalit
y

Description

retry_interval number 1 The number of seconds that the sender Platform waits before
retrying a request for this subscription the first time

current_queue_size int 1 The number of updates to Party Issued Objects that the sender
is storing in its persistent queue for this particular subscription
at the time that this response is generated

max_queue_size int 1 The maximum number of updates to Party Issued Objects that
the sender promises to queue for the receiver for this particular
subscription

70

4. Remote Procedure Calls

4.1. Introduction
This section is not normative.

Besides data replication, a lot of other functionality in OCPI is about remote procedure calls: one platform requesting
an operation on another platform, expecting to receive a response from the other platform about the result of the
operation.

Like for data replication, we give one specification of how all remote procedure calls in OCPI are done, to facilitate
simple and correct implementations.

An RPC use case for OCPI 3.0 will specify:

• The purpose of the Remote Procedure Call, in the form of the use case header with its objectives, description,
preconditions, postconditions etcetera

• An operation name

• An HTTP request verb to use

• If the Remote Procedure Call requires an HTTP request body, and if so, the form that the body should take

• The form for the OCPI response data

• A list of possible reasons for error with the OCPI response codes to use for those

4.2. Use Cases

4.2.1. UC: 04.01 - Make a Remote Procedure Call on behalf of a Party to
another Party on another Platform

1 Objective(s) 1. Party X on Platform A gets Party Y on Platform B to perform an operation for them
2. Party X on Platform A learns about the result of the requested operation

2 Description Platform A sends an HTTP request to Platform B, stating which operation Party X wants
performed and what all the parameters for the operation are. Platform B then responds
with the result of the operation or an error message detailing why the operation could not
be performed.

3 Actors Any

4 Flow 1. Platform A makes a request to Platform B, with the Module that they are requesting an
operation of, the requested operation, and parameters for the operation.
2. Platform B responds with the result of the operation or an error message detailing why
the operation could not be performed.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A has an operation name, an HTTP request verb and optionally a request payload
for an operation that it wants to request on behalf of Party X from Party Y.

71

6 Postconditions Party X has a response to its request, or has learned that Party Y on Platform B is not able
to respond to it

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

Make a Remote Procedure Call on behalf of a Party to another Party on another Platform

PLATFORM A PLATFORM B

We assume that a Party X on Platform A with Party ID DEPTX is requesting an
operation from a Party Y with Party ID USPTY on Platform B

request to /ocpi/from/DEPTX/to/USPTY/<module>/<operation>

validates request and if possible, performs operation

result of operation

Figure 26. Sequence Diagram: Make a Remote Procedure Call on behalf of a Party to another Party on another
Platform

Table 23. UC: 04.01 Requirements

ID Precondition Requirement

R.04.01.
01

Platform A SHALL make its request to Platform B
according to Make a request on behalf of a Party to a
Party on another Platform

R.04.01.
02

Platform A SHALL use a relative path for the request that
consists of two segments, namely first the Module ID of
the module that they are requesting an operation for,
and second the operation name that is given in the use
case that describes the operation later in this document.

R.04.01.
03

The operation name used for R.04.01.2 SHALL NOT be
one of "update", "cancel-my-subscription", "cancel-your-
subscription" or "state" so as to prevent path conflicts
with the Party Issued Objects use cases.

R.04.01.
04

Platform A SHALL use the HTTP request verb that is given
in the use case that describes the operation later in this
document.

R.04.01.
05

The use case for the operation, given later in
this document, requires a request body

Platform A SHALL include a request body in the request,
of the form required in that use case for the operation.

R.04.01.
06

Platform B was able to execute the operation
so that it produced a result

Platform B SHALL set the payload field of the
OcpiResponse object in the response body to the result
of the operation, in the form required in the use case for
the operation

72

ID Precondition Requirement

R.04.01.
07

Platform B failed to execute the operation for
one of the reasons listed in the use case for the
operation

Platform B SHALL set the status code of the
OcpiResponse object in the response body to one of the
error codes given for the reasons listed in the use case
for the operation

4.2.2. UC: 04.02 - Let a Hub find a receiver Party for a Remote Procedure Call

1 Objective(s) 1. Let a Party get responses to Remote Procedure Calls even when they don’t know which
Party can respond to it

2 Description Party X on Platform A makes a Remote Procedure Call request to the Roaming Hub Party
on Platform B. Platform B sends a response, indicating the selected receiver Party in the
response envelope.

3 Actors Any

4 Flow 1. Platform A makes a request to Platform B, setting the sender field to Party X’s Party ID
and the receiver field to Platform B’s Roaming Hub Party ID
2. Platform B finds out which party can respond and obtains the response
3. Platform B sends the response to Platform A, indicating the selected receiver in the
response envelope

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform A serves Party X to Platform B.
Platform B has given a Roaming Hub Party ID to Platform A according to the Request
Parties served by Platform use case.
Platform A has an operation name, an HTTP request verb and optionally a request payload
for an operation that it wants to request on behalf of Party X from any Party that Platform
B serves to Platform A.

6 Postconditions Party X has a response to its request, or has learned that no Party on Platform B is able to
respond to it.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s) This use case corresponds to the "Open Routing Request" concept of OCPI 2.2 and 2.2.1.

The archetypical example of this use case is when a CPO seeks authorization to charge for
a charge token that was swiped on one of its charging stations. When this CPO is
connected to a Hub, it will want to send one request for authorization and check if the Hub
can authorize it on behalf of any MSP hosted by that Hub.

73

Party X

Party X

Platform A

Platform A

Platform B

Platform B

Party Y

Party Y

Party Z

Party Z

We assume that the party IDs of Party X, Party Y and Party Z are DEPTX, FRPTY and FRPTZ respectively

Platform A learns that Platform B's Roaming
Hub party ID is FRHBB as per use case
"Request Parties served by Platform"

We use a GET request for the example but the use
case works the same way for other request verbs

GET /ocpi/from/DEPTX/to/FRHBB/<module>/<operation>

Platform B now has to figure out which Party can respond to the request, and obtain the response.
It is free to decide how. In the example we give two alternatives: a local lookup and a broadcast
and collect approach.

variant 1: local lookup

consult locally stored data to see which
party would respond and what
their response should be.

For the example, we assume that the party who can respond is Party Y.

variant 2: broadcast and collect

Platform B forwards the request to Parties it serves to Platform A, either
using OCPI to yet other platforms or by using other means of communication

GET /ocpi/from/DEPTX/to/FRPTY/<module>/<operation>

HTTP 200 OK
+ status: 1000
data: ...

GET /ocpi/from/DEPTX/to/FRPTZ/<module>/<operation>

HTTP 404 Not Found

HTTP 200 OK
+routed_receiver: FRPTY
+data: ...

Figure 27. Sequence Diagram: Let a Hub find a receiver Party for a Remote Procedure Call

Table 24. UC: 04.02 Requirements

ID Precondition Requirement

R.04.02.
01

Platform A SHALL request a Remote Procedure Call from
Platform B according to Make a Remote Procedure Call
on behalf of a Party ot another Party on another
Platform

R.04.02.
02

Platform A SHALL use Party X’s Party ID as the sender
party ID

R.04.02.
03

Platform A SHALL use Platform B’s Roaming Hub Party
ID, as obtained using the Request Parties served by
Platform use case, as the receiver party ID

R.04.02.
05

Platform B is able to respond to this request
with an OcpiResponse object and HTTP 200 or
201 status code on behalf of some Party it
serves to Platform A

Platform B SHALL use that OcpiResponse object in the
response body to Platform A, with the single
modification that the routed_receiver field of the
OcpiResponse object SHALL be set to the Party ID of the
Party that Platform B is responding on behalf of

R.04.02.
05

Platform B is not able to respond to this
request with an OcpiResponse object or HTTP
200 or 201 status code on behalf of some Party
it serves to Platform A

Platform B SHALL respond with HTTP status code 200
and an OcpiResponse object in the response body with
the status field set to one of the Hub error codes

74

4.2.3. UC: 04.03 - Make a Remote Procedure Call Allowing Asynchronous
Responses

1 Objective(s) 1. Let a Party get responses to Remote Procedure Calls even when they are not available
immediately when the Party makes the request

2 Description Party X on Platform A makes a Remote Procedure Call request to Party Y on Platform B.
Platform A includes a callback identifier in the request to relate the eventual asynchronous
response to it. Party Y on Platform A responds with an HTTP response indicating a
preliminary status of request processing. When a final result of the request is available,
Platform B posts this final result to an URL containing the callback ID from Platform A’s
original request.

3 Actors Any

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B which receives it on
behalf of Party Y.
2. Platform B answers to Platform A indicating a preliminary request processing status.
3. Platform B and Party Y execute the steps necessary to obtain a result to the operation
requested by Platform A.
4. Platform B sends the final result to Platform A by making a second HTTP request to
Platform A.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform A serves Party X to Platform B.
Platform B serves Party Y to Platform A.
Platform A has a module name, an operation name and optionally a request payload for
an operation that it wants to request on behalf of Party X from Party Y.

6 Postconditions Party X has a response to its request, or has learned that Party Y on Platform B is not able
to respond to it.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s) This use case is to be referenced by later use cases that require asynchronous remote
procedure calls. These use cases have to specify the operation name, the request object
type and the response object type to use.

75

Platform A Platform B

Let's assume that a Party DEPTX served by Platform A wants to request an
operation from a Party DKPTY served by Platform B.

POST /ocpi/from/DEPTX/to/DKPTY/<module>/<operation name>
+ asynchronous response URL
+ other request properties

checks anything that can be checked quickly beforehand

HTTP 200 OK
+ status ACCEPTED

This is where remote communication to Charging Stations or other time-consuming operations can happen.

POST /ocpi/from/DKPTY/to/DEPTX/async-responses/<ID from Party X's request>
+ operation result

HTTP 200 OK

Figure 28. Sequence Diagram: Make a Remote Procedure Call Allowing Asynchronous Responses

Table 25. UC: 04.03 Requirements

ID Precondition Requirement

R.04.03.
01

Platform A SHALL make its request to Platform B
according to Make a Remote Procedure Call on Behalf of
a Party to Another Party on Another Platform.

R.04.03.
02

Platform A SHALL use the POST HTTP request verb.

R.04.03.
03

Platform A SHALL use the module ID and operation given
in a later use case referencing this one name when
making its request to Platform B.

R.04.03.
04

Platform A SHALL set the request body of its request to
an AsyncRequest object.

R.04.03.
05

Platform A SHALL set the value of the callback_id field in
the AsyncRequest object to a value that was never used
before for an asynchronous remote procedure call from
Party X on Platform A to Party Y on Platform B.

R.04.03.
06

Platform A SHALL fill the payload field in the
AsyncRequest object as specified in a later use case
referencing this use case.

R.04.03.
07

Platform B receives Platform A’s request and is
able to process it

Platform B SHALL respond to Platform A’s request as in
R.04.01.06, setting the value of the status_code field of
the OcpiResponse object to 1000, and putting an
ImmediateResponseToAsyncRequest enum value in the
data field of the OcpiResponse object.

R.04.03.
08

Platform B accepted Platform A’s remote
procedure call, that is, Platform B responded to
Platform A’s request with an OcpiResponse
object with 1000 as the value of the status field
and ACCEPTED as the value of the data field

Platform B SHALL make a request to Platform A
according to Make a request on behalf of a Party to a
Party on another Platform to inform Platform A of the
result of the remote procedure call once this result is
available.

76

ID Precondition Requirement

R.04.03.
09

Platform B is making the request to Platform A
as required by R.04.03.08

Platform B SHALL use the POST HTTP request verb.

R.04.03.
10

Platform B is making the request to Platform A
as required by R.04.03.08

Platform B SHALL use a relative path for its request that
consists of two segments, namely the string "async-
responses" and the callback ID given in the
AsyncRequest object in Platform A’s request.

R.04.03.
11

Platform B is making the request to Platform A
as required by R.04.03.08

Platform B SHALL set the request body to an
AsyncResponse that describes the result of the operation
requested by Platform A.

R.04.03.
12

Platform B is making the request to Platform A
as required by R.04.03.08 and Platform B
successfully completed the operation
requested by Party X on Platform A

Platform B SHALL set the result_type of the
AsyncResponse in the request body to SUCCESS and
leave the error field of the AsyncResponse in the request
body unset and set the payload field of the
AsyncResponse object in the request body to a value
specified in a later use case that references this use case.

R.04.03.
13

Platform B is making the request to Platform A
as required by R.04.03.08 and Platform B did
not obtain a successful result of the operation
requested by Party X on Platform A

Platform B SHALL set the result_type of the
AsyncResponse in the request body to something else
than SUCCESS and leave the payload field of the
AsyncResponse object in the request body empty and set
the error field of the AsyncRespnose to a value specified
in a later use case that references this use case..

R.04.03.
14

Platform A receives Platform B’s request
according to requirements R.04.03.08 to
R.04.03.13

Platform A SHALL respond with an OcpiResponse object
in the response body that leaves the data field unset and
that has the status_code field set to 1000.

4.3. Object types for Remote Procedure Calls Use Cases

4.3.1. AsyncRequest class

Property Type Cardi
nalit
y

Description

callback_id AsciiString[1..36] 1 An identifier to relate a later asynchronous response to this
request

payload any JSON value ? The parameters to the request to which the request sender
expects an asynchronous response

4.3.2. AsyncResponse class

77

Property Type Cardi
nalit
y

Description

result_type AsyncResultType 1 The completion status of the requested asynchronous remote
procedure call

error any JSON value ? The error that occurred during the execution of the
asynchronous remote procedure call, if any

payload any JSON value ? The result of the asynchronous remote procedure call, if any

4.3.3. AsyncResultType enum

Value Description

SUCCESS Remote procedure call executed successfully

FAILED Remote procedure call execution failed

NOT_SUPPORTED The requested operation is not supported by the device that has to execute it

REJECTED The requested operation was rejected by the device that has to execute it

TIMEOUT No result was received from the device that had to execute the requested operation
within a reasonable time

NOTE
This corresponds to the CommandResultType enumeration of OCPI 2.2.1, with those values removed
that were specific to certain commands, and with ACCEPTED renamed to SUCCESS.

4.3.4. ImmediateResponseToAsyncRequest enum

The intermediate status of an asynchronous remote procedure call that is given in the HTTP response to the initial
request to make the call.

Value Description

ACCEPTED Remote procedure call accepted by the receiving Party.

NOT_SUPPORTED This remote procedure call is not supported by the receiving Party or by the charging
infrastructure device that has to execute it.

REJECTED Remote procedure call was rejected by the receiving Party.

NOTE This corresponds to the the CommandResponseType enumeration of OCPI 2.2.1.

78

5. Locations
This chapter describes the Locations module.

An OCPI 3.0 module is a set of Functional Use Cases organised around a certain type of data object being replicated
from one party to another. In the Locations module, the type of data object is the Location. What a Location is is
defined in the Terminology section of the Business Use Cases document. Essentially a Location is a Charging Pool plus
extra data on how Drivers can use it and what amenities are available around the Pool. How a Location is represented
in OCPI messages is specified below.

Initially a Locations module was conceived in earlier OCPI versions to inform an MSP of where their Drivers can
charge. Nowadays, it can be used also by other actors than MSPs who want to know about a CPO’s physical charging
infrastructure for other purposes. One can think of SCSPs who want to know which physical infrastructure there is for
them to set charging profiles on, or navigation service providers who want to display charging facilities to their users
in an interactive maps app.

5.1. Changes from OCPI 2.2.1
• Removed the country code and party ID, as from all Party Issued Objects, because these are now unambiguously

transferred using the Party Issued Object replication mechanism

• Split off the replication of live EVSE status to another module

• Moved the commands found in 2.2.1 that operate on Locations from the Commands module to the Locations
module

• Added a Charging Station layer between the Location and EVSE layers of the Locations data model

• Added a Parking object to each EVSE to describe the parking situation

• Added a max_power field to the Location object so that CPOs can disclose how much power a Location as a whole
can draw.

• Grouped address fields inside a Location and made them optional.

• Added MCS and SAE J3400 Connector types.

• Added TAXI_ONLY parking restriction.

• Added capabilities field on Connector to reflect IEC 15118 compatibility.

• Added a field for an assistance telephone number to the Location object.

• The REMOTE_START_STOP_CAPABLE capability was split in separate capabilities for start and stop, so that CPOs
can allow remote start without allowing remote stop.

5.2. Replicating Location objects

5.2.1. UC: 05.01 - Replicate Location objects from one Party to another Party

1 Objective(s) 1. Party X on a Platform A obtains and maintains an up-to-date copy of the Location
objects that are issued by Party Y on a Platform B

2 Description Using the use cases of the Party-Issued Objects chapter, Location objects are replicated
from Party Y to Party X

79

3 Actors eMSP, CPO, NAP, NSP

4 Flow 1. Party X subscribes to Party Y’s Location objects
2. Party Y pushes all their Location objects as of subscription time to Party X
3. Party Y pushes every newly updated Location object to Party X as soon as these updates
happen
4. This continues until either party cancels the subscription

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Locations to Party X on Platform A.

6 Postconditions Party X has up-to-date information on the charging infrastructure offered by Party Y

7 Error reporting Error reporting happens according to the use cases in the Party-Issued Objects use cases.

8 Remark(s)

Table 26. UC: 05.01 Requirements

ID Precondition Requirement

R.05.01.
01

Platform A SHALL subscribe according to use case
Subscribe to the Party Issued Objects of a certain Module
of a certain Party, using "locations" as the ModuleID
value.

R.05.01.
02

Platforms A and B MAY also follow use cases Subscribe to
Party Issued Objects of a certain Module of a certain
Party as a Hub, Subscribe to Party Issued Objects of a
certain Module of a Hub or Subscribe to Party Issued
Objects of a certain Module of a Hub as a Hub while
subscribing according to R.05.01.01

R.05.01.
03

Platform B sends a Party Issued Object update
to Party X on Platform A according to use case
Send a full update of a Party Issued Object to a
Subscribed Platform in the context of the
subscription created according to R.05.01.01

Platform B SHOULD set the value of the "payload" field of
the PartyIssuedObjectUpdate object in the request body
to a JSON object that conforms to the Location object
type.

R.05.01.
04

Private Charging Stations, home or business charging
facilities that do not need to be published on public apps,
and do not require remote control via OCPI, SHOULD
NOT be issued through the OCPI Locations module.

80

ID Precondition Requirement

R.05.01.
05

Party X receives a Location with the publish
field set to false

Party X SHALL NOT allow this Location to be shown in an
app or on a website or such unless it is to the holder of a
Token in the publish_allowed_to list. Even parties like
NSP or eMSP that did not issue this Token MAY show this
Location on an app or website, but only to the holder of
that Token. Such NSPs or eMSPs MAY show the Location
if and only if the user of their app has provided
information about their Token and that information
matches all the fields of one of the PublishToken tokens
in the list.

R.05.01.
06

Party Y SHOULD make sure that the max_electric_power,
max_voltage, max_amperage and power_type fields in the
Connector objects in the Location objects that they send
to Party X are filled in so that all static constraints on the
charging power are taken into account.
This means that Party Y should not only take into
account constraints that are present in the charging
equipment as it leaves the factory, but also things like
constraints on the power supply to the charging
equipment and constraints introduced by damage to the
equipment.
It also means that short-term changes in expected power
output, typically lasting less than 24 hours, due to things
like energy trading and load balancing between multiple
EVSEs at the same location, do not have to be taken into
account when filling in these fields.

5.2.2. Example Location objects

5.2.2.1. Example public Location

This is an example of a public Location. Can be used by any EV Driver as long as their eMSP has a roaming agreement
with the CPO or the Location has an ad-hoc payment possibility

• publish = true

• parking_type = ON_STREET but could also be another value.

• EVSE.parking.parking_restrictions is not used.

{
 "id": "LOC1",
 "publish": true,
 "name": "Gent Zuid",
 "address": {
 "address": "F.Rooseveltlaan 3A",
 "city": "Gent",
 "postal_code": "9000",
 "country": "BEL",
 "coordinates": {
 "latitude": "51.047599",
 "longitude": "3.729944"

81

 }
 },
 "parking_type": "ON_STREET",
 "charging_pool": [
 {
 "id": "CH0023",
 "capabilities": [
 "RESERVABLE"
],
 "floor_level": "-1",
 "evses": [
 {
 "uid": "3256",
 "evse_id": "BE*BEC*E041503001",
 "connectors": [
 {
 "id": "1",
 "standard": "IEC_62196_T2",
 "format": "CABLE",
 "power_type": "AC_3_PHASE",
 "max_voltage": 220,
 "max_amperage": 16,
 "last_updated": "2015-03-16T10:10:02Z"
 },
 {
 "id": "2",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_3_PHASE",
 "max_voltage": 220,
 "max_amperage": 16,
 "last_updated": "2015-03-18T08:12:01Z"
 }
],
 "physical_reference": "1",
 "parking": {
 "vehicle_types": ["MOTORCYCLE", "PERSONAL_VEHICLE"],
 "drive_through": false,
 "evse_position": "RIGHT",
 "restricted_to_type": false,
 "reservation_required": false
 },
 "last_updated": "2015-06-28T08:12:01Z"
 },
 {
 "uid": "3257",
 "evse_id": "BE*BEC*E041503002",
 "connectors": [
 {
 "id": "1",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_3_PHASE",
 "max_voltage": 220,
 "max_amperage": 16,
 "last_updated": "2015-06-29T20:39:09Z"
 }
],
 "physical_reference": "2",
 "parking": {
 "vehicle_types": ["MOTORCYCLE", "PERSONAL_VEHICLE"],
 "drive_through": false,
 "evse_position": "RIGHT",
 "restricted_to_type": false,
 "reservation_required": false
 },
 "last_updated": "2015-06-29T20:39:09Z"
 }
],
 "last_updated": "2015-06-29T20:39:09Z"

82

 }
],
 "operator": {
 "name": "BeCharged"
 },
 "time_zone": "Europe/Brussels",
 "last_updated": "2015-06-29T20:39:09Z"
}

5.2.2.2. Example destination Location

This is an example of a destination Location. This is a Location where only guests, employees or customers can
charge. For an EV driver, it can be useful to know if he/she can charge at his destination.

For example at a restaurant, only customers of the restaurant can charge their EV. Or at an office building where
employees and guest of the office can charge their EV.

Locations you can think of where this is useful: restaurants, bars, clubs, theme parks, stores, supermarkets, company
building, office buildings, etc.

• publish = true

• parking_type = PARKING_LOT (but could also be PARKING_GARAGE, ON_DRIVEWAY or UNDERGROUND_GARAGE)

• EVSE.parking_restrictions = CUSTOMERS

{
 "id": "3e7b39c2-10d0-4138-a8b3-8509a25f9920",
 "publish": true,
 "name": "Infuse",
 "address": {
 "address": "Tamboerijn 7",
 "city": "Etten-Leur",
 "postal_code": "4876 BS",
 "country": "NLD",
 "coordinates": {
 "latitude": "51.562659",
 "longitude": "4.638865"
 }
 },
 "parking_type": "PARKING_LOT",
 "charging_pool": [
 {
 "id": "IHOMER001",
 "coordinates": {
 "latitude": "51.562794",
 "longitude": "4.638964"
 },
 "evses": [
 {
 "uid": "fd855359-bc81-47bb-bb89-849ae3dac89e",
 "evse_id": "NL*ALF*E000000001",
 "connectors": [
 {
 "id": "1",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_3_PHASE",
 "max_voltage": 220,
 "max_amperage": 16,
 "last_updated": "2019-07-01T12:12:11Z"
 }
],
 "parking": {

83

 "vehicle_types": ["MOTORCYCLE", "PERSONAL_VEHICLE"],
 "drive_through": false,
 "evse_position": "HEAD",
 "restricted_to_type": false,
 "reservation_required": false,
 "parking_restrictions": [
 {
 "group": "CUSTOMERS",
 "applies_outside_opening_hours": true
 }
]
 },
 "last_updated": "2019-07-01T12:12:11Z"
 },
 {
 "uid": "9c6aab5e-7a59-4300-9c7e-996642e6fd82",
 "evse_id": "NL*ALF*E000000002",
 "connectors": [
 {
 "id": "2",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_3_PHASE",
 "max_voltage": 220,
 "max_amperage": 16,
 "last_updated": "2019-06-30T12:13:14Z"
 }
],
 "parking": {
 "vehicle_types": ["MOTORCYCLE", "PERSONAL_VEHICLE"],
 "drive_through": false,
 "evse_position": "HEAD",
 "restricted_to_type": false,
 "reservation_required": false,
 "parking_restrictions": [
 {
 "group": "CUSTOMERS",
 "applies_outside_opening_hours": true
 }
]
 },
 "last_updated": "2019-06-30T12:13:14Z"
 }
],
 "last_updated": "2019-07-01T12:12:11Z"
 },
 {
 "id": "IHOMER002",
 "coordinates": {
 "latitude": "51.562769",
 "longitude": "4.638906"
 },
 "evses": [
 {
 "uid": "0d7a4e3a-1100-4014-bfde-62bac6ad8471",
 "evse_id": "NL*ALF*E000000003",
 "connectors": [
 {
 "id": "1",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_3_PHASE",
 "max_voltage": 220,
 "max_amperage": 16,
 "last_updated": "2019-06-30T11:00:00Z"
 }
],
 "parking": {
 "vehicle_types": ["MOTORCYCLE", "PERSONAL_VEHICLE"],
 "drive_through": false,

84

 "evse_position": "HEAD",
 "restricted_to_type": false,
 "reservation_required": false,
 "parking_restrictions": [
 {
 "group": "CUSTOMERS",
 "applies_outside_opening_hours": true
 }
]
 },
 "last_updated": "2019-06-30T11:00:00Z"
 },
 {
 "uid": "21110f8c-3f71-43dc-b42b-e16d7260a7c1",
 "evse_id": "NL*ALF*E000000004",
 "connectors": [
 {
 "id": "2",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_3_PHASE",
 "max_voltage": 220,
 "max_amperage": 16,
 "last_updated": "2019-06-28T16:53:12Z"
 }
],
 "parking": {
 "vehicle_types": ["MOTORCYCLE", "PERSONAL_VEHICLE"],
 "drive_through": false,
 "evse_position": "HEAD",
 "restricted_to_type": false,
 "reservation_required": false,
 "parking_restrictions": [
 {
 "group": "CUSTOMERS",
 "applies_outside_opening_hours": true
 }
]
 },
 "last_updated": "2019-06-28T16:53:12Z"
 }
],
 "last_updated": "2019-06-30T11:00:00Z"
 }
],
 "time_zone": "Europe/Amsterdam",
 "last_updated": "2019-07-01T12:12:11Z"
}

5.2.2.3. Example destination Locations not published, but paid guest usage possible

This is an example of a destination Location. But the owner of the Location has requested not to publish the Location
in Apps or on websites.

Charging is still possible: EV drivers of an eMSP with a roaming agreement can still charge their EV. The eMSP
customer service department can use the information from the Locations module to help the driver, maybe even start
a session for a driver. Starting a session from an App is not possible, because the driver will not be able to select the
Charging Station on a map.

In case the EV driver is not billed for charging, there is, in such a case, no reason to publish the Location via OCPI.

• publish = false

• publish_allowed_to is not used

85

• parking_type is not used`

• EVSE.parking.parking_restrictions = CUSTOMERS May still be useful so a support desk can also tell this to a
customer.

{
 "id": "3e7b39c2-10d0-4138-a8b3-8509a25f9920",
 "publish": false,
 "name": "Infuse",
 "address": {
 "address": "Tamboerijn 7",
 "city": "Etten-Leur",
 "postal_code": "4876 BS",
 "country": "NLD",
 "coordinates": {
 "latitude": "51.562659",
 "longitude": "4.638865"
 }
 },
 "charging_pool": [
 ... elided for brevity ...
],
 "time_zone": "Europe/Amsterdam",
 "last_updated": "2019-07-01T12:12:11Z"
}

5.2.2.4. Example Location with limited visibility

This is an example of a Location that only a limited group can see (and use) via an App or website.

Typical examples where this is useful:

• Charging Stations in the parking garage of an apartment building. Only owners can see/control the Charging
Stations.

• Charging Stations at an office, for employees only. Only employees can see/control the Charging Stations.

• Charging Stations at vehicle depot. Any employee can see/control an Charging Station, even transaction they did
not start. Use group_id for this.

The Locations will not be published to the general public. Only selected Tokens can see (and control) the Charging
Stations via eMSP app.

• publish = false

• publish_allowed_to contains list with information of Tokens that are allowed to be shown the Location.

• EVSE.parking.parking_type = UNDERGROUND_GARAGE (but could also be PARKING_GARAGE, ON_DRIVEWAY or PARKING_LOT)

{
 "id": "f76c2e0c-a6ef-4f67-bf23-6a187e5ca0e0",
 "publish": false,
 "publish_allowed_to": [{
 "visual_number": "12345-67",
 "issuer": "NewMotion"
 }, {
 "visual_number": "0055375624",
 "issuer": "ANWB"
 }, {
 "uid": "12345678905880",
 "type": "RFID"
 }],

86

 "name": "Water State",
 "address": {
 "address": "Taco van der Veenplein 12",
 "city": "Leeuwarden",
 "postal_code": "8923 EM",
 "country": "NLD",
 "coordinates": {
 "latitude": "53.213763",
 "longitude": "5.804638"
 }
 },
 "parking_type": "UNDERGROUND_GARAGE",
 "charging_pool": [
 {
 "id": "DEV000013",
 "evses": [
 {
 "uid": "8c1b3487-61ac-40a7-a367-21eee99dbd90",
 "evse_id": "NL*ALL*EGO0000013",
 "connectors": [
 {
 "id": "1",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_3_PHASE",
 "max_voltage": 230,
 "max_amperage": 16,
 "last_updated": "2019-09-27T00:19:45Z"
 }
],
 "parking": {
 "vehicle_types": ["MOTORCYCLE", "PERSONAL_VEHICLE"],
 "drive_through": false,
 "evse_position": "HEAD",
 "restricted_to_type": false,
 "reservation_required": false
 },
 "last_updated": "2019-09-27T00:19:45Z"
 }
],
 "last_updated": "2019-09-27T00:19:45Z"
 }
],
 "time_zone": "Europe/Amsterdam",
 "last_updated": "2019-09-27T00:19:45Z"
}

5.2.2.5. Example private Charging Station with eMSP app control

This is an example of a private/home Charging Station that needs to be controlled via an eMSP App.

The Locations SHALL NOT be published to the general public. Only the owner, identified by his/her Token can see (and
control) the Charging Stations via an eMSP app.

• publish = false

• publish_allowed_to contains the information of the Tokens of the owner.

• parking_type is not used, not relevant, owner knows where his Charging Station is.

• address is not used, not relevant, owner knows where his Charging Station is.

{
 "id": "a5295927-09b9-4a71-b4b9-a5fffdfa0b77",
 "publish": false,
 "publish_allowed_to": [{

87

 "visual_number": "0123456-99",
 "issuer": "MoveMove"
 }],
 "parking_type": "ON_DRIVEWAY",
 "charging_pool": [
 {
 "id": "DEV000001",
 "evses": [
 {
 "uid": "4534ad5f-45be-428b-bfd0-fa489dda932d",
 "evse_id": "DE*ALL*EGO0000001",
 "connectors": [
 {
 "id": "1",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_1_PHASE",
 "max_voltage": 230,
 "max_amperage": 8,
 "last_updated": "2019-04-05T17:17:56Z"
 }
],
 "parking": {
 "vehicle_types": ["PERSONAL_VEHICLE"],
 "drive_through": false,
 "evse_position": "RIGHT",
 "restricted_to_type": false,
 "reservation_required": false
 },
 "last_updated": "2019-04-05T17:17:56Z"
 }
],
 "last_updated": "2019-04-05T17:17:56Z"
 }
],
 "time_zone": "Europe/Berlin",
 "last_updated": "2019-04-05T17:17:56Z"
}

5.2.2.6. Example Charging Station in a parking garage with opening hours

This is an example of a Charging Station, located in a parking garage with limited opening hours: 7:00 - 18:00.

If the EV is left in the parking garage overnight, the car will still be charged.

• publish = true

• parking_type = PARKING_GARAGE but could also be another value.

• EVSE.parking_restrictions not used.

• opening_times is used.

• charging_when_closed = true

{
 "id": "cbb0df21-d17d-40ba-a4aa-dc588c8f98cb",
 "publish": true,
 "name": "P-Huset Leonard",
 "address": {
 "address": "Claesgatan 6",
 "city": "Malmö",
 "postal_code": "214 26",
 "country": "SWE",
 "coordinates": {
 "latitude": "55.590325",

88

 "longitude": "13.008307"
 }
 },
 "parking_type": "PARKING_GARAGE",
 "charging_pool": [
 {
 "id": "DEV00000012",
 "evses": [
 {
 "uid": "eccb8dd9-4189-433e-b100-cc0945dd17dc",
 "evse_id": "SE*EVC*E000000123",
 "connectors": [
 {
 "id": "1",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_3_PHASE",
 "max_voltage": 230,
 "max_amperage": 32,
 "last_updated": "2017-03-07T02:21:22Z"
 }
],
 "parking": {
 "vehicle_types": [
 "MOTORCYCLE",
 "PERSONAL_VEHICLE"
],
 "drive_through": false,
 "evse_position": "HEAD",
 "restricted_to_type": false,
 "reservation_required": false
 },
 "last_updated": "2017-03-07T02:21:22Z"
 }
],
 "last_updated": "2017-03-07T02:21:22Z"
 }
],
 "time_zone": "Europe/Stockholm",
 "opening_times": {
 "twentyfourseven": false,
 "regular_hours": [{
 "weekday": 1,
 "period_begin": "07:00",
 "period_end": "18:00"
 }, {
 "weekday": 2,
 "period_begin": "07:00",
 "period_end": "18:00"
 },{
 "weekday": 3,
 "period_begin": "07:00",
 "period_end": "18:00"
 },{
 "weekday": 4,
 "period_begin": "07:00",
 "period_end": "18:00"
 },{
 "weekday": 5,
 "period_begin": "07:00",
 "period_end": "18:00"
 },{
 "weekday": 6,
 "period_begin": "07:00",
 "period_end": "18:00"
 },{
 "weekday": 7,
 "period_begin": "07:00",
 "period_end": "18:00"
 }]

89

 },
 "charging_when_closed": true,
 "last_updated": "2017-03-07T02:21:22Z"
}

A formal version of the data schema will be made available as JSON Schema ([JSONSCHEMA])separately.

5.3. Remote Procedure Calls on Location objects

5.3.1. UC: 05.02 - Reserve an EVSE at a Location

1 Objective(s) 1. Party Y reserves an EVSE issued by them for a Charging Session paid for by Party X
2. Party X knows which EVSE has been reserved for them and for which time window

2 Description An asynchronous remote procedure call is made by Party X to Party Y. In the request Party
X sends the specifics of the reservation that they wish to make. In the response Party Y
sends a confirmation or a rejection of the reservation.

3 Actors eMSP, CPO

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains the charge token that reservation is for, the time
until which the reserved EVSE is to be held, and the ID of the Location on which an EVSE
should be reserved.
2. Party Y reserves the EVSE.
3. Platform B makes a request on behalf of Party Y to Platform A receiving the request on
behalf of Party X. This request informs Party X of whether the reservation succeeded.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Locations to Party X on Platform A.

6 Postconditions One of these two:

* Party X knows Party Y rejected their attempt to reserve an EVSE at one of Party Y’s
Locations.

* Party Y reserved an EVSE at one of Party Y’s Locations for a charging session with the
Charge Token that Party X sent them in the request. Also Party X knows that their
reservation request was turned into a reservation and that they will have to pay for a
Charging Session started with the given Token during the reservation.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

If Party Y received the request and reserved an EVSE for Party X, but Platform B failed to
deliver a response to Platform A for Party X, then there is a reservation but Party X does
not know about it. TODO how to prevent unwanted no-show charges on Party X in this
case?

8 Remark(s)

90

Platform A Platform B

Let's assume that a party DEPTX served by Platform A is trying to reserve an EVSE for one of their
tokens at a Location issued by a party DKPTY served by Platform B

POST /ocpi/from/DEPTX/to/DKPTY/locations/reserve-now
+ token
+ reservation end time
+ location ID
+ authorization reference
+ asynchronous response URL

checks if an EVSE is available for the reservation

HTTP 200 OK
+ status ACCEPTED

If Party Y's reservation process involves communication with the charging
station, this is where it happens.

If it is happening, Platform B's and/or Party Y's systems communicate with the
charging station and make sure the reservation is acknowledged by it. The
precise details of which parties, systems and protocols are involved is
outside of the scope of OCPI.

POST /ocpi/from/DKPTY/to/DEPTX/async-responses/<callback ID>
+ result type SUCCESS

HTTP 200 OK

Figure 29. Sequence Diagram: Reserve an EVSE at a Location

Platform A Platform B

Let's assume that a party DEPTX served by Platform A is trying to reserve an EVSE for one of their
tokens at a Location issued by a party DKPTY served by Platform B

POST /ocpi/from/DEPTX/to/DKPTY/locations/reserve-now
+ token
+ reservation end time
+ location ID
+ authorization reference

Let's assume Party Y does not allow reservations of EVSEs in their network

HTTP 200 OK
+ status NOT_SUPPORTED

Figure 30. Sequence Diagram: Reserve an EVSE at a Location - request rejected by Party Y’s backend

91

Platform A Platform B

Let's assume that a party DEPTX served by Platform A is trying to reserve an EVSE for one of their
tokens at a Location issued by a party DKPTY served by Platform B

POST /ocpi/from/DEPTX/to/DKPTY/locations/reserve-now
+ token
+ reservation end time
+ location ID
+ authorization reference
+ asynchronous response URL

checks if an EVSE is available for the reservation

HTTP 200 OK
+ status ACCEPTED

communicates with EVSE

POST /ocpi/from/DKPTY/to/DEPTX/async-responses/<callback ID>
+ result type FAILED

HTTP 200 OK

Figure 31. Sequence Diagram: Reserve an EVSE at a Location - request rejected by Charging Station

Table 27. UC: 05.02 Requirements

ID Precondition Requirement

R.05.02.
01

Platform A SHALL make the request to reserve an EVSE
following Make a Remote Procedure Call Allowing
Asynchronous Responses.

R.05.02.
02

Platform A SHALL use "reserve-now" as the operation
name for Make a Remote Procedure Call Allowing
Asynchronous Responses.

R.05.02.
03

Platform A SHALL use a ReserveNowRequest in the
payload field of the request body for Make a Remote
Procedure Call Allowing Asynchronous Responses.

R.05.02.
04

Platform A does not mean to update an
existing reservation

Platform A SHALL use a reservation identifier that was
never used before for a reservation by Party X on a
Location issued by Party Y.

R.05.02.
05

No EVSE UID is given in the request by Platform
A

Party Y SHOULD treat the request as a request to keep
one EVSE available in the Location with the ID given by
Party X in the request for a Charging Session with the
given Token until the end time given in Platform A’s
reservation request.

R.05.02.
06

An EVSE UID is given in the request by Platform
A

Party Y SHOULD treat the request as a request to keep
the EVSE with the given UID available for a Charging
Session with the given Token until the end time given in
Platform A’s reservation request.

R.05.02.
07

Party Y already reserved an EVSE for Party X
with the reservation ID and Location ID given
in the request from Platform A

Party Y SHOULD remove the old reservation with that
reservation ID and Location ID, and then process the
request for a reservation.

92

ID Precondition Requirement

R.05.02.
08

Party Y cannot fulfill the request from Party X
because of the state of the reservation or the
status of the EVSE

Platform B SHALL respond to Platform A’s request with
ACCEPTED in the data field of the OcpiResponse in the
response body. Platform B SHALL then send an
asynchronous response with the result_type field of the
AsyncResponse set to REJECTED and the error field of the
AsyncResponse set to an appropriate ReservationError
value.

R.05.02.
09

Party Y reserved an EVSE as requested by Party
X

Platform B SHALL send an asynchronous response with
the result_type field of the AsyncResponse set to
SUCCESS and the error and payload fields of the
AsyncResponse both left unset.

R.05.02.
10

Platform A delivered an asynchronous
response with result type SUCCESS

Party Y SHALL have an EVSE available at the Location with
the identifier given in Platform A’s request for charging
with the Token given in Platform A’s request until the
time given in Platform A’s request

R.05.02.
11

Party Y has responded asynchronously with
result type SUCCESS and the token type of the
Token in Platform A’s request is AD_HOC_USER
or APP_USER

The reservation counts as authorization for charging as
specified in the reservation request. That is, Party Y
SHALL authorize attempts to start a Charge Session with
the token given in Platform A’s request on the EVSE
reserved for this request without going through real-
time authorization until the end time given in Platform
A’s request.

R.05.02.
12

Party Y has responded asynchronously with
result type SUCCESS and the token type of the
Token in Platform A’s request is RFID

The reservation counts as authorization for charging as
specified in the reservation request for a duration of 15
minutes. That is, Party Y SHALL authorize attempts to
start a Charge Session with the token given in Platform
A’s request on the EVSE reserved for this request without
real-time authorization until either 15 minutes after it
received the reservation request or the end time given in
Platform A’s request, whichever comes earlier.

NOTE
An unused Reservation of an EVSE may result in cost being incurred by Party X, thus also in a Session
and a CDR being replicated from Party Y to Party X.

NOTE

The reservation ID used in Platform A’s request is only required to be unique among reservations
made by Party X on Party Y’s infrastructure. If Platform A passes the reservation on to other systems,
like to the Charging Station with OCPP, it has to make sure that it uses a reservation ID that is
unique in those other systems. Therefore, Platform A will typically generate its own reservation IDs
that are unique on the entire Platform.

NOTE
There is no requirement that Tokens used by Party X for this use case be previously replicated to
Party Y with the Tokens module.

93

5.3.2. UC: 05.03 - Cancel a Reservation as an eMSP

1 Objective(s) 1. Party Y will no longer keep an EVSE available for charging with a certain Token from
Party X

2 Description An eMSP may learn from a Driver that a certain reservation is not needed anymore. The
eMSP may also conclude by itself that a certain reservation is no longer desirable, e.g.
when a Driver for whom a reservation was made runs out of prepaid credit.

To cancel a reservation, the eMSP (Party X) makes an asynchronous remote procedure call
to the CPO (Party Y). In the request Party X sends the identifier of the reservation that they
wish to cancel. In the response Party Y sends a confirmation or a rejection of the
cancelation request.

3 Actors eMSP, CPO

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains the identifier of the reservation that is to be
canceled.
2. Party Y determines if it is willing and able to execute the requested cancelation.
3. Platform B responds to Platform A on behalf of Party Y to inform Party X if their request
was accepted.
4. If the request was accepted, Party Y proceeds to remove the reservation from all
affected systems, potentially including a Charging Station.
5. If the request was accepted, Platform B sends a request to Platform A on behalf of Party
Y to inform Party X of the result of the cancelation operation.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Locations to Party X on Platform A.

6 Postconditions One of these two:

* Party X knows Party Y rejected their attempt to cancel a reservation of an EVSE at one of
Party Y’s Locations.

* Party Y attempted to cancel the reservation at Party X’s request. Also Party X knows
whether this attempt was successful or not.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

If Party Y received the request and canceled the reservation for Party X, but Platform B
failed to deliver an asynchronous response to Platform A for Party X, then the reservation
was canceled but Party X does not know about it. There is no automatic remediation
process for this condition.

8 Remark(s)

94

Platform A Platform B

Let's assume that a party DEPTX served by Platform A is trying to cancel a reservation for one of their
Drivers at a Location issued by a party DKPTY served by Platform B

POST /ocpi/from/DEPTX/to/DKPTY/locations/cancel-reservation
+ reservation ID

checks if it is willing to let Party X cancel this reservation

HTTP 200 OK
+ status ACCEPTED

If Party Y's reservation process involves communication with the charging
station, this is where it happens.

If it is happening, Platform B's and/or Party Y's systems communicate with the
charging station and make sure the cancelation is acknowledged by it. The
precise details of which parties, systems and protocols are involved is
outside of the scope of OCPI.

POST /ocpi/from/DKPTY/to/DEPTX/async-responses/<callback ID>
+ result type SUCCESS

HTTP 200 OK

Figure 32. Sequence Diagram: Cancel a Reservation as an eMSP

Table 28. UC: 05.03 Requirements

ID Precondition Requirement

R.05.03.
01

Platform A SHALL make the request to cancel a
reservation following Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.05.03.
02

Platform A SHALL use "cancel-reservation" as the
operation name for Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.05.03.
03

Platform A SHALL use a CancelReservationRequest in the
payload field of the request body for Make a Remote
Procedure Call Allowing Asynchronous Responses.

R.05.03.
04

Platform A SHALL set the reservation_id field of
theCancelReservationRequest to a reservation identifier
that it previously used before to make or update a
reservation according to Reserve an EVSE at a Location.

R.05.03.
05

Party Y cannot fulfill the request from Party X
because of the state of the reservation or the
status of the EVSE

Platform B SHALL respond to Platform A’s request with
ACCEPTED in the data field of the OcpiResponse in the
response body. Platform B SHALL then send an
asynchronous response with the result_type field of the
AsyncResponse set to REJECTED and the error field of the
AsyncResponse set to an appropriate ReservationError
value.

R.05.03.
06

Party Y canceled a reservation as requested by
Party X

Platform B SHALL send an asynchronous response with
the result_type field of the AsyncResponse set to
SUCCESS and the error and payload fields of the
AsyncResponse both left unset.

95

NOTE
An unused and canceled Reservation of an EVSE may result in cost being incurred by Party X, thus
also in a Session and a CDR being replicated from Party Y to Party X.

5.3.3. UC: 05.04 - Cancel a Reservation as a CPO

1 Objective(s) 1. Party Y notifies Party X that Party Y is not capable of fulfilling a reservation made by
Party X

2 Description Sometimes a CPO is unfortunately forced to cancel a reservation that it previously
accepted. By making a request to the asynchronous response URL of the reservation
request it can do so.

3 Actors CPO, eMSP

4 Flow 1. Party Y makes a request to the asynchrous response URL of Party X’s reservation remote
procedure call with a "FAILED" result type.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Locations to Party X on Platform A.
Party X on Platform A made a reservation of an EVSE on a Location issued by Party Y on
Platform B.
This reservation has not yet expired.

6 Postconditions Party X knows that Party Y will not be able to fulfill the reservation.

7 Error handling Error reporting by Platform A follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s) This functionality of OCPI is not to be used lightly. When a driver makes a reservation of an
EVSE, they want to be sure to have a charging location. So if the CPO cancels the
reservation, the driver will for sure not like it. There are some circumstances however
where the CPO is forced to cancel a reservation. For example, consider the situation that
the Charging Station has broken down, or the CPO is notified of ongoing roadworks which
makes the Charging Station unreachable, etc.

Platform A Platform B

This sequence diagram is to be understood as following the one for the
successful flow in the "Reserve an EVSE at a Location" use case.

Platform B or Party Y on Platform B notices a problem with the reservation.

POST /ocpi/from/DKPTY/to/DEPTX/async-responses/<callback ID>
+ result type REJECTED

HTTP 200 OK

Figure 33. Sequence Diagram: Cancel a Reservation as a CPO

Table 29. UC: 05.04 Requirements

96

ID Precondition Requirement

R.05.04.
01

Platform B SHALL make a request according to Platform
A according to Make a request on behalf of a Party to a
Party on another Platform with Party Y as the sender and
Party X as the receiver.

R.05.04.
02

Platform B SHALL use the POST request verb for its
request.

R.05.04.
03

Platform B SHALL use the same relative path for its
request that it used before when delivering the
asynchronous response when the reservation was made
according to Reserve an EVSE at a Location.

R.05.04.
04

Platform B SHALL set the result_type field of the
AsyncResponse object in the body of its request to
FAILED.

R.05.04.
05

Platform B MAY set the payload field of the
AsyncResponse object in the body of its request to a
string describing why it has to cancel the reservation

R.05.04.
06

Platform B MAY leave the payload field of the
AsyncResponse object in the body of its request unset

R.05.04.
07

Platform A received Platform B’s request
according to requirements R.05.04.01 -
R.05.04.06.

Platform A SHALL respond with an OcpiResponse object
in the response body that leaves the data field unset and
that has the status_code field set to 1000.

5.3.4. UC: 05.06 - Unlock a Connector

1 Objective(s) 1. Party Y unlocks a Connector at which a Driver related to Party X is charging.

2 Description The Unlock Connector functionality is intended to be used in the rare situation that the
connector is not unlocked successfully after a transaction is stopped. The mechanical
unlock of the lock mechanism might get stuck, for example: fail when there is tension on
the charging cable when the Charging Station tries to unlock the connector. In such a
situation the EV-Driver can contact either the CPO or the eMSP to retry the unlocking.

If they contact the eMSP, the eMSP has no direct access to the Charging Station. The eMSP
may want to use OCPI to request a Connector unlock from the CPO.

To do so, the eMSP (Party X) makes an asynchronous remote procedure call to the CPO
(Party Y). In the request Party X sends the identifiers of the Connector that they wish to
unlock. In the response Party Y sends a confirmation or a rejection of the unlock request.

3 Actors eMSP, CPO

97

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains identifiers to identify the Connector that is to be
unlocked.
2. Party Y determines if it is willing to execute the requested unlock operation.
3. Platform B responds to Platform A on behalf of Party Y to inform Party X if their request
was accepted.
4. If the request was accepted, Party Y proceeds to unlock the connector.
5. If the request was accepted, Platform B sends a request to Platform A on behalf of Party
Y to inform Party X of the result of the unlock operation.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Locations to Party X on Platform A.

6 Postconditions One of these two:

* Party X knows Party Y rejected their attempt to unlock a Connector at one of Party Y’s
Locations.

* Party Y attempted to unlock a Connector at Party X’s request. Also Party X knows
whether this attempt was successful or not.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

If Party Y received the request and unlocked the Connector for Party X, but Platform B
failed to deliver an asynchronous response to Platform A for Party X, then the connection
was unlocked but Party X does not know about it. There is no automatic remediation
process for this condition.

8 Remark(s) The Unlock Connector functionality is designed to be used by operator staff at e.g. an MSP.
It is not intended for direct use by charging app end users as specified in R.05.06.06.

Platform A Platform B

Let's assume that a party DEPTX served by Platform A is trying to unlock a Connector for one of their
Drivers at a Location issued by a party DKPTY served by Platform B

POST /ocpi/from/DEPTX/to/DKPTY/locations/unlock-connector
+ Location, EVSE and connector IDs

checks if it is willing to let Party X unlock this Connector

HTTP 200 OK
+ status ACCEPTED

Party Y requests an unlock from the charging station
(probably using an OCPP UnlockConnector.req)
and learns the outcome from the charging station

POST /ocpi/from/DKPTY/to/DEPTX/async-responses/<callback ID>
+ result type SUCCESS

HTTP 200 OK

Figure 34. Sequence Diagram: Unlock a Connector

98

Table 30. UC: 05.06 Requirements

ID Precondition Requirement

R.05.06.
01

Platform A SHALL make the request to unlock a
Connector following Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.05.06.
02

Platform A SHALL use "unlock-connector" as the
operation name for Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.05.06.
03

Platform A SHALL use a UnlockConnectorRequest in the
payload field of the request body for Make a Remote
Procedure Call Allowing Asynchronous Responses.

R.05.06.
04

Party Y cannot or will not act upon the unlock
request because of the status of the EVSE or
the Connector or the device containing the
EVSE and the Connector

Platform B SHALL respond to Platform A’s request with a
response with ACCEPTED in the data field of the
OcpiResponse object. Platform B SHALL then send a
request with an AsyncResponse object with the payload
field unset and with the error field set to an appropriate
ChargingStationCommandError object.

R.05.06.
05

Party Y received a confirmation from the device
that it accepted the reset request.

Platform B SHALL send an asynchronous response with
the result_type field of the AsyncResponse object set to
SUCCESS, and the payload and error fields of this
AsyncResponse left unset.

R.05.06.
06

Party X and Platform A SHALL NOT provide Drivers with
the opportunity to trigger the process described in this
use case without review by staff working for Party X.

5.3.5. UC: 05.07 - Reset an EVSE

1 Objective(s) 1. Party Y resets an EVSE at which a Driver related to Party X is charging.

2 Description The Reset EVSE functionality is intended to be used in the rare situation that an EVSE is not
correctly responding to a Driver’s interactions. Many such problem situations are caused
by the hardware of software ending up in an unanticipated state. These problems are
typically resolved by requesting the charging station device to perform a reset.

This use case gives the eMSP the opportunity to send reset requests to charging devices
without involving CPO staff. Note that it is optional for CPOs to offer this access to their
hardware to eMSPs; they may simply reject all reset requests from eMSPs if they would
rather not open up their devices to reset requests from third parties. They can indicate this
unwillingness to reset their hardware at eMSPs' requests by not supplying the
RESET_CAPABLE capability in the ChargingStation objects in their Locations.

To request a reset from a device, the eMSP (Party X) makes an asynchronous remote
procedure call to the CPO (Party Y). In the request Party X sends the identifiers of the EVSE
for which they wish to reset the device. In the response Party Y sends a confirmation or a
rejection of the reset request.

3 Actors eMSP, CPO

99

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains identifiers to identify the EVSE for which the device
is to be reset.
2. Party Y determines if it is willing to execute the requested reset operation.
3. Platform B responds to Platform A on behalf of Party Y to inform Party X if their request
was accepted.
4. If the request was accepted, Party Y proceeds to reset the device.
5. If the request was accepted, Platform B sends a request to Platform A on behalf of Party
Y to inform Party X of the result of the reset operation.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Locations to Party X on Platform A.

6 Postconditions One of these two:

* Party X knows Party Y rejected their attempt to reset a device at one of Party Y’s
Locations.

* Party Y attempted to reset a device at Party X’s request. Also Party X knows whether this
attempt was successful or not.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

If Party Y received the request and reset the device for Party X, but Platform B failed to
deliver an asynchronous response to Platform A for Party X, then the device was reset but
Party X does not know about it. There is no automatic remediation process for this
condition.

100

8 Remark(s) The Reset EVSE functionality is designed to be used by operator staff at e.g. an MSP. It is
not intended for direct use by charging app end users as specified in R.05.07.06.

OCPI does not concern itself with how EVSEs are grouped according to their connection to
a back-office system or their control electronics. As a result, this use case cannot and does
not specify exactly how a CPO decides which device is to be reset based on the Location ID
and EVSE UID given in the reset request. It is up to the CPO to decide on a way to
determine the right device to reset, or alternatively, to not offer this functionality to
eMSPs.

Whichever way a CPO chooses, they will typically also want to take into account that a
reset to help one Driver should not interfere with the service of other Drivers. For
example, it is probably not the right course of action for a CPO to do a full "hard" reset of
the central control unit of a fifty EVSE charging facility because an eMSP requested a reset
for one EVSE.

Typically, a CPO that supports the Reset EVSE functionally will want to have a policy in
place that rejects Reset EVSE requests by default. Only under specific circumstances
should Reset EVSE requests typically be acted upon by the CPO. Such circumstances might
be that the request comes from a Party who is known to be a customer support provider
to the CPO, or that the request comes from an eMSP who issued the Charging Token that
is used for a currently ongoing Charging Session at the EVSE.

As noted under there, the RESET_CAPABLE capability being present on a Charging Station
does not create an obligation on the issuer of the Location to act upon any Reset EVSE
requests.

Platform A Platform B

Let's assume that a party DEPTX served by Platform A is trying to reset the device for an EVSE
Drivers at a Location issued by a party DKPTY served by Platform B. Party DEPTX wants to do this in
order to help one of their Drivers who is having trouble with their Charging Session there.

POST /ocpi/from/DEPTX/to/DKPTY/locations/reset-evse
+ Location ID and EVSE UID

checks if it is willing to let Party X reset the device
containing and/or managing the given EVSE

HTTP 200 OK
+ status ACCEPTED

Party Y requests a reset from the charging station
(probably using an OCPP Reset.req)
and learns the outcome from the charging station

POST /ocpi/from/DKPTY/to/DEPTX/async-responses/<callback ID>
+ result type SUCCESS

HTTP 200 OK

Figure 35. Sequence Diagram: Reset an EVSE

Table 31. UC: 05.07 Requirements

101

ID Precondition Requirement

R.05.07.
01

Platform A SHALL make the request to reset the device
for an EVSE following Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.05.07.
02

Platform A SHALL use "reset-evse" as the operation
name for Make a Remote Procedure Call Allowing
Asynchronous Responses.

R.05.07.
03

Platform A SHALL use a ResetEvseRequest in the payload
field of the request body for Make a Remote Procedure
Call Allowing Asynchronous Responses.

R.05.07.
04

Party Y cannot or will not act upon the reset
request because of the status of the EVSE or
the Connector or the device containing the
EVSE and the Connector

Platform B SHALL respond to Platform A’s request with a
response with ACCEPTED in the data field of the
OcpiResponse object. Platform B SHALL then send a
request with an AsyncResponse object with the payload
field unset and with the error field set to an appropriate
ChargingStationCommandError object.

R.05.07.
05

Party Y unlocked the Connector Platform B SHALL send an asynchronous response with
the result_type field of the AsyncResponse object set to
SUCCESS, and the payload and error fields of this
AsyncResponse left unset.

R.05.07.
06

Party X and Platform A SHALL NOT provide Drivers with
the opportunity to trigger the process described in this
use case without review by staff working for Party X.

5.4. Object type definitions

5.4.1. AdditionalGeoLocation class

This class defines an additional geographical location that is relevant for the Location. The geodetic system to be used
is WGS 84.

Property Type Card. Description

latitude AsciiString[7..10] 1 Latitude of the point in decimal degree. Example:
50.770774. Decimal separator: "." Regex: -?[0
-9]{1,2}\.[0-9]{5,7}

longitude AsciiString[7..11] 1 Longitude of the point in decimal degree. Example:
-126.104965. Decimal separator: "." Regex: -?[0
-9]{1,3}\.[0-9]{5,7}

name DisplayText ? Name of the point in local language or as written at the
location. For example the street name of a parking lot
entrance or its number.

102

5.4.2. Address class

This gives information on how to locate the Location.

Property Type Card. Description

address UnicodeString[1..45] 1 Street/block name and house number if available.

city UnicodeString[1..45] 1 City or town.

postal_code UnicodeString[1..10] ? Postal code of the Location.

state UnicodeString[1..20] ? State or province of the Location.
This is intended to be used only in locales where a state
or province is commonly given in addresses. This field
would typically be filled for Locations in the United States
of America and be left unset for Locations in The
Netherlands for example.

country CiAsciiString[3] 1 ISO 3166-1 alpha-3 code for the country of this Location.

coordinates GeoLocation 1 Coordinates of the Location.
This could be the geographical location of one or more
Charging Stations within a facility, but it can also be the
entrance of a parking or other facility where Charging
Stations are located. It is up to the CPO to use the point
that makes the most sense to a Driver for a given
Location. Once arrived at the Location’s coordinates, any
further instructions to reach a Charging Station from the
Location coordinates are stored in the Charging Station
object itself (such as the floor number, visual
identification or written instructions).

5.4.3. CancelReservationRequest class

With CancelReservation the Sender can request the Cancel of an existing Reservation. The CancelReservation needs to
contain the reservation_id that was given by the Sender to the ReserveNow.

Property Type Card. Description

reservation_id CiAsciiString[1..36] 1 The ID of the reservation that cancelation is requested
for.

5.4.4. Capability enum

The capabilities of a Charging Station.

Value Description

CHARGING_PROFILE_CAP
ABLE

The Charging Station supports charging profiles.

103

Value Description

CHARGING_PREFERENCE
S_CAPABLE

The Charging Station supports charging preferences.

CHIP_CARD_SUPPORT The Charging Station has a payment terminal that supports chip cards.

CONTACTLESS_CARD_SU
PPORT

The Charging Station has a payment terminal that supports contactless cards.

CREDIT_CARD_PAYABLE The Charging Station has a payment terminal that makes it possible to pay for charging
using a credit card.

DEBIT_CARD_PAYABLE The Charging Station has a payment terminal that makes it possible to pay for charging
using a debit card.

PED_TERMINAL The Charging Station has a payment terminal with a pin-code entry device.

REMOTE_START_CAPABL
E

Sessions on the Charging Station can be started through OCPI RPC use case Start a
Session.

REMOTE_STOP_CAPABLE Sessions on the Charging Station can be stopped through OCPI RPC use case Stop a
Session.

RESERVABLE The Charging Station’s EVSEs can be reserved.

RESET_CAPABLE The Party that issued the Location with this Charging Station can accept requests for
remote resets of the device containing this Charging Station as specified in use case
Reset an EVSE. The RESET_CAPABLE capability does not create an obligation on the issuer
of the Location to accept any request for a reset. The RESET_CAPABLE capability merely
signals that a reset request may be accepted by the CPO under some conditions. These
conditions may not be transparent to the Party receiving the Location.
Also note that OCPP uses a different definition of Charging Station from the one used by
OCPI and other standards. Therefore there is no guarantee that the effect of a Reset on a
certain EVSE is limited to the EVSEs that are in the same OCPI Charging Station.

RFID_READER Charging at this Charging Station can be authorized with an RFID token.

START_SESSION_CONNE
CTOR_REQUIRED

When a StartSessionRequest is sent to an EVSE of Charging Station, the MSP is required
to add the optional connector_id field in the StartSessionRequest object.

TOKEN_GROUP_CAPABLE This Charging Station supports token groups, two or more tokens work as one, so that a
session can be started with one token and stopped with another (handy when a card and
key-fob are given to the EV-driver).

UNLOCK_CAPABLE Connectors on this Charging Station have mechanical lock that can be requested by the
eMSP to be unlocked.

When a Charging Station supports ad-hoc payments with a payment terminal, please use a combination of the
following values to explain the possibilities of the terminal: CHIP_CARD_SUPPORT, CONTACTLESS_CARD_SUPPORT,
CREDIT_CARD_PAYABLE, DEBIT_CARD_PAYABLE, PED_TERMINAL.

There are Charging Stations in the field that still use OCPP 1.6 or older OCPP versions. If these Charging Station have
multiple connectors per EVSE, the CPO needs to know which connector to start when receiving a StartSessionRequest
for a session on such a Charging Station. If this is the case, the CPO should set the START_SESSION_CONNECTOR_REQUIRED
capability on such a Charging Station.

104

5.4.5. ChargingStation class

The ChargingStation object describes a device that is physically distinct and has a single user interface. It always
belongs to a Location object. The object only contains directions to get from the central Location entrance to the
Charging Station (i.e. floor, physical_reference or directions).

When the directional properties of an Charging Station are insufficient to reach the Charging Station from the
Location entrance, then it typically indicates that the Charging Station should be put in a different Location object
(sometimes with the same address but with different coordinates/directions).

A ChargingStation object contains a list with the Charging Station’s EVSEs.

Note that OCPI’s definition of "Charging Station" is the same one that is used by EMI3 and EU regulations, but
different from the one used by OCPP as of OCPP versions 1.5, 1.6 and 2.0.1. In a situation where a single OCPP
connection is used to connect multiple physically distinct booths or poles that each have their own screens and/or
RFID readers, there are multiple Charging Stations for OCPI, while there is only one OCPP "Charging Station".

Property Type Card. Description

id CiAsciiString[1..36] 1 An identifier that uniquely indentifiers this Charging
Station among all Charging Stations in all Locations
issued by the same Party.

evses EVSE * List of EVSEs that belong to this Charging Station.

capabilities Capability * List of functionalities that the Charging Station is capable
of.

floor_level AsciiString[1..4] ? Level on which the Charging Station is located (in garage
buildings) in the locally displayed numbering scheme.

coordinates GeoLocation ? Coordinates of the Charging Station.

physical_reference UnicodeString[1..16] ? A number/string printed on the outside of the Charging
Station for visual identification.

directions DisplayText * Multi-language human-readable directions when more
detailed information on how to reach the Charging
Station from the Location is required.

images Image * Links to images related to the Charging Station such as
photos or logos.

last_updated DateTime 1 Timestamp when this Charging Station or one of its
EVSEs was last updated (or created).

5.4.6. ChargingStationCommandError class

Property Type Card. Description

status ChargingStationComma
ndStatus

1 An error code that signals why the requested operation
was not executed or failed

105

Property Type Card. Description

message DisplayText * Human-readable description of the reason for the status
(if one can be provided), multiple languages can be
provided.

5.4.7. ChargingStationCommandStatus enum

Value Description

DEVICE_OFFLINE The operation could not be performed because remote communication is not
available to the device that has to execute the operation.

EVSE_OCCUPIED The operation could not be performed because the EVSE that the operation was
requested on is occupied.

EVSE_INOPERATIVE The operation could not be performed because the EVSE that the operation was
requested on is inoperative.

5.4.8. Connector class

A Connector is the socket or cable and plug available for the EV to use. A single EVSE may provide multiple Connectors
but only one of them can be in use at the same time. A Connector always belongs to an EVSE object.

Property Type Card. Description

id CiAsciiString[1..36] 1 Identifier of the Connector within the EVSE. Two
Connectors may have the same id as long as they do not
belong to the same EVSE object.

standard ConnectorType 1 The standard of the installed connector.

format ConnectorFormat 1 The format (socket/cable) of the installed connector.

cable_length number ? The length of the attached cable in centimeters. Only
applicable if the value of the format field is CABLE.

power_type PowerType 1

max_voltage int 1 Maximum voltage of the connector (line to neutral for
AC_3_PHASE), in volt [V]. For example: DC Chargers might
vary the voltage during charging when battery almost
full.

max_amperage int 1 Maximum amperage of the connector, in ampere [A].

106

Property Type Card. Description

max_electric_power int ? Maximum electric power that can be delivered by this
connector, in Watts (W). When the maximum electric
power is lower than the calculated value from voltage
and amperage, this value should be set.
For example: A DC Charging Station which can delivers
up to 920V and up to 400A can be limited to a maximum
of 150kW (max_electric_power = 150000). Depending on
the car, it may supply max voltage or current, but not
both at the same time.
For AC Charging Stations, the amount of phases used
can also have influence on the maximum power.

terms_and_conditions URL ? URL to the operator’s terms and conditions.

capabilities ConnectorCapability * A list of functionalities that the connector is capable of.

last_updated DateTime 1 Timestamp when this Connector was last updated (or
created).

5.4.9. ConnectorCapability OpenEnum

Functionalities that a Connector may or may not support.

Note that these capabilities are meant to signal to eMSPs and their Drivers that a Driver can indeed use these
functionalities at a Connector. Mere support for a standard by the charging hardware is not enough to warrant the
presence of these capabilities.

Value Description

IEC_15118_2_PLUG_AND_CHARGE The Connector supports authentication of the Driver
using a contract certificate stored in the vehicle
according to IEC 15118-2.

IEC_15118_20_PLUG_AND_CHARGE The Connector supports authentication of the Driver
using a contract certificate stored in the vehicle
according to IEC 15118-20.

NOTE

ConnectorCapability is an OpenEnum while Capability is not. This is done because
ConnectorCapability serves to signal which communication standards between vehicle and EVSE are
supported, and it is easy to imagine more such standards appearing during the lifecycle of OCPI 3.0.
Capability on the other hand is about less clearly defined human-directed services and encouraging
Parties to add their own values there would easily lead to oversharing of non-standardized services.

5.4.10. ConnectorFormat enum

The format of the Connector, that is, whether it is a socket or a plug.

Value Description

SOCKET The connector is a socket; the EV user needs to bring a fitting plug.

107

Value Description

CABLE The connector is an attached cable; the EV users car needs to have a fitting inlet.

5.4.11. ConnectorType OpenEnum

The socket or plug standard of the charging point.

For convenience the possible values are grouped in three separate tables by general plug category: common EV
charging connectors, household/industrial connectors, and rare legacy or novelty connectors.

5.4.12. Common EV Charging Connector Types

These are the EV specific connectors typically used on publicly accessible charging stations as of 2024.

Value Description

CHADEMO CHAdeMO

IEC_62196_T1 IEC 62196 Type 1 "SAE J1772"

IEC_62196_T1_COMBO Combo Type 1 based, "CCS1"

IEC_62196_T2 IEC 62196 Type 2 "Mennekes"

IEC_62196_T2_COMBO Combo Type 2 based, "CCS2"

MCS The MegaWatt Charging System (MCS) connector as developed by CharIN

SAE_J3400 SAE J3400, also known as North American Charging Standard (NACS), developed by Tesla,
Inc in 2021.

TESLA_S Tesla Connector "Model-S"-type (oval, 5 pin). Mechanically compatible with SAE J3400 but
uses CAN bus for communication instead of power line communication.

5.4.13. Domestic and Industrial Connector Types

DOMESTIC_A Standard/Domestic household, type "A", NEMA 1-15, 2 pins

DOMESTIC_B Standard/Domestic household, type "B", NEMA 5-15, 3 pins

DOMESTIC_C Standard/Domestic household, type "C", CEE 7/17, 2 pins

DOMESTIC_D Standard/Domestic household, type "D", 3 pins

DOMESTIC_E Standard/Domestic household, type "E", CEE 7/5 3 pins

DOMESTIC_F Standard/Domestic household, type "F", CEE 7/4, Schuko, 3 pins

DOMESTIC_G Standard/Domestic household, type "G", BS 1363, Commonwealth, 3 pins

DOMESTIC_H Standard/Domestic household, type "H", SI-32, 3 pins

DOMESTIC_I Standard/Domestic household, type "I", AS 3112, 3 pins

DOMESTIC_J Standard/Domestic household, type "J", SEV 1011, 3 pins

DOMESTIC_K Standard/Domestic household, type "K", DS 60884-2-D1, 3 pins

108

DOMESTIC_A Standard/Domestic household, type "A", NEMA 1-15, 2 pins

DOMESTIC_L Standard/Domestic household, type "L", CEI 23-16-VII, 3 pins

DOMESTIC_M Standard/Domestic household, type "M", BS 546, 3 pins

DOMESTIC_N Standard/Domestic household, type "N", NBR 14136, 3 pins

DOMESTIC_O Standard/Domestic household, type "O", TIS 166-2549, 3 pins

IEC_60309_2_single_16 IEC 60309-2 Industrial Connector single phase 16 amperes (usually blue)

IEC_60309_2_three_16 IEC 60309-2 Industrial Connector three phases 16 amperes (usually red)

IEC_60309_2_three_32 IEC 60309-2 Industrial Connector three phases 32 amperes (usually red)

IEC_60309_2_three_64 IEC 60309-2 Industrial Connector three phases 64 amperes (usually red)

NEMA_5_20 NEMA 5-20, 3 pins

NEMA_6_30 NEMA 6-30, 3 pins

NEMA_6_50 NEMA 6-50, 3 pins

NEMA_10_30 NEMA 10-30, 3 pins

NEMA_10_50 NEMA 10-50, 3 pins

NEMA_14_30 NEMA 14-30, 3 pins, rating of 30 A

NEMA_14_50 NEMA 14-50, 3 pins, rating of 50 A

5.4.14. Legacy and Novelty Connector Types

CHAOJI The ChaoJi connector. The new generation charging connector, harmonized
between CHAdeMO and GB/T. DC.

GBT_AC Guobiao GB/T 20234.2 AC socket/connector

GBT_DC Guobiao GB/T 20234.3 DC connector

IEC_62196_T3A IEC 62196 Type 3A

IEC_62196_T3C IEC 62196 Type 3C "Scame"

PANTOGRAPH_BOTTOM_
UP

On-board Bottom-up-Pantograph typically for bus charging

PANTOGRAPH_TOP_DOW
N

Off-board Top-down-Pantograph typically for bus charging

TESLA_R Tesla Connector "Roadster"-type (round, 4 pin)

5.4.15. EnergyMix class

This type is used to specify the energy mix and environmental impact of the supplied energy at a Location or in a
Tariff.

109

Property Type Card. Description

is_green_energy boolean 1 True if 100% from regenerative sources. (CO2 and
nuclear waste is zero)

energy_sources EnergySource * Key-value pairs (enum + percentage) of energy sources
of this Location.

environ_impact EnvironmentalImpact * Key-value pairs (enum + percentage) of nuclear waste
and CO2 exhaust of this Location.

supplier_name UnicodeString[1..64] ? Name of the energy supplier, delivering the energy for
this Location.*

energy_product_name UnicodeString[1..64] ? Name of the energy suppliers product/tariff plan used at
this location.*

* These fields can be used to look up energy qualification or to show it directly to the customer (for well-known brands like
Greenpeace Energy, etc.)

5.4.15.1. Examples

Simple:

 "energy_mix": {
 "is_green_energy": true
 }

5.4.16. EnergySource class

Key-value pairs (enum + percentage) of energy sources. All given values of all categories should add up to 100
percent.

Property Type Card. Description

source EnergySourceCategory 1 The type of energy source.

percentage number 1 Percentage of this source (0-100) in the mix.

5.4.17. EnergySourceCategory enum

Categories of energy sources.

Value Description

NUCLEAR Nuclear power sources.

GENERAL_FOSSIL All kinds of fossil power sources.

COAL Fossil power from coal.

GAS Fossil power from gas.

GENERAL_GREEN All kinds of regenerative power sources.

110

Value Description

SOLAR Regenerative power from PV.

WIND Regenerative power from wind turbines.

WATER Regenerative power from water turbines.

5.4.18. EnvironmentalImpact class

Amount of waste produced/emitted per kWh.

Property Type Card. Description

category EnvironmentalImpactC
ategory

1 The environmental impact category of this value.

amount number 1 Amount of this portion in g/kWh.

5.4.19. EnvironmentalImpactCategory enum

Categories of environmental impact values.

Value Description

NUCLEAR_WASTE Produced nuclear waste in grams per kilowatthour.

CARBON_DIOXIDE Exhausted carbon dioxide in grams per kilowatthour.

5.4.20. EVSE class

The EVSE object describes the part that controls the power supply to a single EV in a single session. It always belongs
to a ChargingStation object.

An EVSE object has a list of Connectors which can not be used simultaneously: only one connector per EVSE can be
used at the time.

111

Field Name Type Cardi
nalit
y

Description

uid CiAsciiString[1..36] 1 Uniquely identifies the EVSE among all EVSEs of all
Locations of the same Party. This field can never be
changed, modified or renamed. This is the 'technical'
identification of the EVSE, not to be used as 'human
readable' identification, use the field evse_id for that.
This field is named uid instead of id, because id could be
confused with evse_id which is the field containing an ID
in the EMI3 defined "EVSE-ID" format.
Note that in order to fulfill both the requirement that an
EVSE’s uid be unique within a CPO’s platform and the
requirement that EVSEs are never deleted, a CPO will
typically want to avoid using identifiers of the physical
hardware for this uid property. If they do use such a
physical identifier, they will find themselves breaking the
uniqueness requirement for uid when the same physical
EVSE is redeployed at another Location.

evse_id CiAsciiString[1..48] ? Compliant with the following specification for EVSE ID
from "eMI3 standard version V1.0"
(http://emi3group.com/documents-links/) "Part 2:
business objects." Optional because: if an evse_id is to be
re-used in the real world, the evse_id can be removed
from an EVSE object if the status is set to REMOVED.

presence PresenceStatus 1 Whether this EVSE is currently physically present, or only
planned for the future, or already removed.

status_schedule StatusSchedule * Indicates a planned status update of the EVSE.

connectors Connector + List of available connectors on the EVSE.

physical_reference UnicodeString[1..16] ? A number/string printed on the outside of the EVSE for
visual identification.

parking Parking 1 A description of the available parking for the EVSE.

images Image * Links to images related to the EVSE such as photos or
logos.

calibration_info_url URL ? Link to a URL where certificates, identifiers and public
keys related to the calibration of meters in this EVSE can
be found.

last_updated DateTime 1 Timestamp when this EVSE or one of its Connectors was
last updated (or created).

5.4.21. EvsePosition enum

The position of an EVSE relative to the EVSE’s parking space.

112

http://emi3group.com/documents-links/

Value Description

LEFT The EVSE is to the left of the vehicle.
For streetside parking, the CPO can assume the vehicle is facing the same way as traffic
on the side of the road that the EVSE is on. This means that LEFT is used for all streetside
parking in locales with left-hand traffic.
For parking bays leading sideways from a roadway, the CPO can assume the vehicle is
parking with the nose away from the roadway (that is, entering the parking bay driving
forward).

RIGHT The EVSE is to the right of the vehicle when parked.
For streetside parking, the CPO can assume the vehicle is facing the same way as traffic
on the side of the road that the EVSE is on. This means that RIGHT is used for all
streetside parking in locales with right-hand traffic.
For parking bays leading sideways from a roadway, the CPO can assume the vehicle is
parking with the nose away from the roadway (that is, entering the parking bay driving
forward).

CENTER The EVSE is at the center of the impassable narrow end of a parking bay.

For EVSEs located near the corner of a parking bay, LEFT or RIGHT should be used as appropriate according to the
side of the vehicle the corner is on.

5.4.22. ExceptionalPeriod class

Specifies one exceptional period for opening or access hours.

Property Type Card. Description

period_begin DateTime 1 Begin of the exception. The timestamp is given in UTC as
all DateTime fields. The Location’s time_zone field can be
used to convert to local time.

period_end DateTime 1 End of the exception. The timestamp is given in UTC as
all DateTime fields. The Location’s time_zone field can be
used to convert to local time.

5.4.23. Facility enum

Value Description

HOTEL A hotel.

RESTAURANT A restaurant.

CAFE A cafe.

MALL A mall or shopping center.

SUPERMARKET A supermarket.

SPORT Sport facilities: gym, field etc.

RECREATION_AREA A recreation area.

113

Value Description

NATURE Located in, or close to, a park, nature reserve etc.

MUSEUM A museum.

BIKE_SHARING A bike/e-bike/e-scooter sharing location.

BUS_STOP A bus stop.

TAXI_STAND A taxi stand.

TRAM_STOP A tram stop/station.

METRO_STATION A metro station.

TRAIN_STATION A train station.

AIRPORT An airport.

PARKING_LOT A parking lot.

CARPOOL_PARKING A carpool parking.

FUEL_STATION A Fuel station.

5.4.24. GeoLocation class

This class defines the geographical location of the Charging Station. The geodetic system to be used is WGS 84.

Property Type Card. Description

latitude AsciiString[7..10] 1 Latitude of the point in decimal degree. Example:
50.770774. Decimal separator: "." Regex: -?[0
-9]{1,2}\.[0-9]{5,7}

longitude AsciiString[7..11] 1 Longitude of the point in decimal degree. Example:
-126.104965. Decimal separator: "." Regex: -?[0
-9]{1,3}\.[0-9]{5,7}

NOTE
Five decimal places is seen as a minimum for GPS coordinates of the Charging Station as this gives
approximately 1 meter precision. More is always better. Seven decimal places gives approximately
1cm precision.

5.4.25. Hours class

Opening and access hours of the Location.

Property Type Card. Description

twentyfourseven boolean 1 True to represent 24 hours a day and 7 days a week,
except the given exceptions.

114

Property Type Card. Description

regular_hours RegularHours * Regular hours, weekday-based. Only to be used if
twentyfourseven=false, then this field needs to contain at
least one RegularHours object. The time windows given
in the different RegularHours objects may not overlap.
The RegularHours objects must be ordered ascendingly,
first by the weekday field and then by the period_begin
field.

exceptional_openings ExceptionalPeriod * Exceptions for specified calendar dates, time-range
based. Periods the station is operating/accessible.
Additional to regular_hours. May overlap regular rules.

exceptional_closings ExceptionalPeriod * Exceptions for specified calendar dates, time-range
based. Periods the station is not operating/accessible.
Overwriting regular_hours and exceptional_openings.
Should not overlap exceptional_openings.

5.4.25.1. Example: 24/7 open with exceptional closing.

Open 24 hours per day, 7 days a week, except for 25th of December 2018 between 03:00 and 05:00.

{
 "twentyfourseven": true,
 "exceptional_closings": [{
 "period_begin": "2018-12-25T03:00:00Z",
 "period_end": "2018-12-25T05:00:00Z"
 }]
}

twentyfourseven

Open

exceptional_closing

Closed

result opening hours

Open Open

0 1 2 3 4 5 6

Figure 36. Diagram showing a representation of the example 24/7 open with exception closing.

5.4.25.2. Example: Opening Hours with exceptional closing.

Regular opening hours between 01:00 and 06:00. With exceptional closing on 25th of December 2018 between 03:00
and 05:00.

{
 "twentyfourseven": false,
 "regular_hours": [{

115

 "weekday": 1,
 "period_begin": "01:00",
 "period_end": "06:00"
 }, {
 "weekday": 2,
 "period_begin": "01:00",
 "period_end": "06:00"
 }],
 "exceptional_closings": [{
 "period_begin": "2018-12-25T03:00:00Z",
 "period_end": "2018-12-25T05:00:00Z"
 }]
}

regular_hours

Open

exceptional_closing

Closed

result opening hours

Open Open

0 1 2 3 4 5 6

Figure 37. Diagram showing a representation of the example Opening Hours with exceptional closing

5.4.25.3. Example: Opening Hours with exceptional opening.

Regular opening hours between 00:00 and 04:00. With exceptional opening on 25th of December 2018 between 05:00
and 07:00.

{
 "twentyfourseven": false,
 "regular_hours": [{
 "weekday": 1,
 "period_begin": "00:00",
 "period_end": "04:00"
 }, {
 "weekday": 2,
 "period_begin": "00:00",
 "period_end": "04:00"
 }],
 "exceptional_openings": [{
 "period_begin": "2018-12-25T05:00:00Z",
 "period_end": "2018-12-25T06:00:00Z"
 }]
}

116

regular_hours

Open

exceptional_openings

Open

result opening hours

Open Open

0 1 2 3 4 5 6

Figure 38. Diagram showing a representation of the example Opening Hours with exceptional opening.

5.4.26. Parking class

Describes the restrictions on parking that is available for an EVSE.

This object describes the available parking. It may not describe an identifiable physical parking bay. The reason is that
for some EVSEs, no identifiable delineated parking bays are available. This occurs a lot with streetside parking for
example.

Property Type Card. Description

vehicle_types VehicleType + The vehicle types that the EVSE is intended for and that
the associated parking is designed to accomodate.

max_vehicle_weight number ? The maximum vehicle weight that can park at the EVSE,
in kilograms. A value for this field should be provided
unless the value of the vehicle_types field contains no
values other than PERSONAL_VEHICLE or MOTORCYCLE.

max_vehicle_height number ? The maximum vehicle height that can park at the EVSE,
in centimeters. A value for this field should be provided
unless the value of the vehicle_types field contains no
values other than PERSONAL_VEHICLE or MOTORCYCLE.

max_vehicle_length number ? The maximum vehicle length that can park at the EVSE,
in centimeters. A value for this field should be provided
unless the value of the vehicle_types field contains no
values other than PERSONAL_VEHICLE or MOTORCYCLE.

max_vehicle_width number ? The maximum vehicle width that can park at the EVSE, in
centimeters. A value for this field should be provided
unless the value of the vehicle_types field contains no
values other than PERSONAL_VEHICLE or MOTORCYCLE.

parking_bay_length number ? The length of the parking bay, in centimeters. A value for
this field should be provided unless the value of the
vehicle_types field contains no values other than
PERSONAL_VEHICLE or MOTORCYCLE.

117

Property Type Card. Description

parking_bay_width number ? The width of the parking bay, in centimeters. A value for
this field should be provided unless the value of the
vehicle_types field contains no values other than
PERSONAL_VEHICLE or MOTORCYCLE.

dangerous_goods_allo
wed

boolean ? Whether vehicles loaded with dangerous substances are
allowed to park at the EVSE. A value for this field should
be provided unless the value of the vehicle_types field
contains no values other than PERSONAL_VEHICLE or
MOTORCYCLE.

evse_position EvsePosition 1 The position of the EVSE relative to the parking space.

direction ParkingDirection 1 The direction in which the vehicle is to be parked next to
this EVSE.

restricted_to_type boolean 1 Whether it is forbidden for vehicles of a type not listed in
vehicle_types to park at this EVSE, even if they can
physically park there safely.

parking_restrictions ParkingRestriction * All applicable restrictions on who can park at this EVSE,
apart from those related to the vehicle type.

reservation_required boolean 1 Whether a reservation is required for parking at the
EVSE.

time_limit number ? A time limit. If this field is present, vehicles may not park
in this parking longer than this number of minutes.

roofed boolean ? Whether the vehicle will be parked under a roof while
charging.

images Image * Photos of the parking space at the EVSE. At least one
photograph should be provided if the value of
vehicle_types includes the DISABLED vehicle type.

lighting boolean ? Whether the parking space for the EVSE is lit by artificial
lighting.

standards UnicodeString[1..36] * A list of standards that the parking space conforms to,
e.g. PAS 1899 for parking for people with disabilities.

NOTE
The reason that there are separate fields for the maximum vehicle dimensions and the parking bay
dimensions is that these fields can indeed have different values for parking bays for people with
disabilities.

5.4.27. ParkingDirection enum

Value Description

PARALLEL Parking happens parallel to the roadway on which vehicles approach the EVSE.

PERPENDICULAR Parking happens perpendicular to the roadway on which vehicles approach the EVSE.

118

Value Description

ANGLE Parking happens at an angle to the roadway on which vehicles approach the EVSE (i.e.
echelon parking).

DRIVE_THROUGH A vehicle can stop, charge, and proceed without reversing into or out of a parking bay.

5.4.28. ParkingRestriction class

A restriction on which groups of drivers can use an EVSE’s parking and thereby the EVSE itself.

Property Type Card. Description

group ParkingRestrictionGrou
p

+ One or more groups that drivers have to be in to be
allowed to park here.

applies_outside_openin
g_hours

boolean 1 Whether the restriction applies also outside opening
hours of the establishment that the Location belongs to.
This field can be used for example to create a
ParkingRestriction that signals that a certain EVSE is for
employees only during opening hours, but can be used
by everyone outside those opening hours.

5.4.29. ParkingRestrictionGroup OpenEnum

An enumeration of possible groups that parking may be restricted to.

Value Description

EMPLOYEES Parking only for people who work at a site, building, or complex that the Location
belongs to.

EV_ONLY Reserved parking spot for electric vehicles.

PLUGGED Parking is only allowed while plugged in (charging).

CUSTOMERS Parking spot for customers/guests only, for example in case of a hotel or shop.

TAXI_ONLY Parking only for taxi vehicles.

TENANTS Parking only for people who live in a complex that the Location belongs to.

OCPI implementers are not required or otherwise expected to make their software check if these restrictions are
fulfilled. These restrictions are typically shown to Drivers in driver apps and enforced by on-site staff.

5.4.30. ParkingType enum

Reflects the general type of the Charging Station’s location. This may be used for Driver information.

Value Description

ALONG_MOTORWAY Location on a parking facility/rest area along a motorway, freeway, interstate, highway
etc.

119

Value Description

PARKING_GARAGE Multistorey car park.

PARKING_LOT A cleared area that is intended for parking vehicles, i.e. at super markets, bars, etc.

ON_DRIVEWAY Location is on the driveway of a house/building.

ON_STREET Parking in public space along a street.

UNDERGROUND_GARAG
E

Multistorey car park, mainly underground.

5.4.31. Location class

Property Type Card. Description

publish boolean 1 Whether the receiving Party or Platform may publish the
Location.
When this is set to false, the receiving Party or Platform
MAY NOT disclose information from this Location object
to anyone not holding a Token listed in the field
publish_allowed_to.
When the same physical facility has both some EVSEs
that may be published and other ones that may not be
published, the sender Party SHOULD send two separate
Location objects for the two groups of EVSEs.

publish_allowed_to PublishTokenType * This field SHALL NOT be used unless the publish field is
set to false.
Only holders of Tokens that match all the set fields of
one PublishToken in the list are allowed to be shown this
Location.

name UnicodeString[1..255] ? Display name of the Location.

address Address ? Address and geographical location of the Location. This
has to be present unless the publish field is set to false.

related_locations AdditionalGeoLocation * Geographical location of related points relevant to the
user.

parking_type ParkingType ? The general type of parking at the Location.

charging_pool ChargingStation + The Charging Pool of this Location, that is, the list of
Charging Stations that make up the physical charging
infrastructure of this Location.

directions DisplayText * Human-readable directions on how to reach the
Location.

operator BusinessDetails ? Information of the operator. When not specified, the
information retrieved with Use Case Request Parties
Served by Platform, selected by the Party ID of the Party
that issued this Location, MAY be used instead.

120

Property Type Card. Description

suboperator BusinessDetails ? Information of the suboperator if available.

owner BusinessDetails ? Information of the owner if available.

services LocationService * Optional list of services that are offered at the Location
by the CPO or their affiliated partners.

facilities Facility * Optional list of facilities that this Location directly
belongs to.

time_zone AsciiString[1..255] 1 One of the TZ-values from [TZVAL] representing the time
zone of the Location. Examples: "Europe/Oslo",
"Europe/Zurich".

opening_times Hours ? The times when the EVSEs at the Location can be
accessed for charging.

charging_when_closed boolean ? Indicates if the EVSEs are still charging outside the
opening hours of the Location. That is, when the parking
garage closes its barriers over night, can vehicles charge
till the next morning? Default: true

images Image * Links to images related to the Location such as photos or
logos.

energy_mix EnergyMix ? Details on the energy supplied at this Location.

max_power LocationMaxPower ? How much power or current this Location can draw from
the grid at any one time.

help_phone CiAsciiString[1..25] ? A telephone number that a Driver using the Location
may call for assistance. Calling this number will typically
connect the caller to the CPO’s customer service
department.

last_updated DateTime 1 Timestamp when this Location or one of its EVSEs or
Connectors were last updated (or created).

5.4.32. LocationMaxPower class

Property Type Card. Description

unit ChargingRateUnit 1 The unit in which the maximum draw is expressed.

value number 1 The maximum power or current that the Location can
draw.

5.4.33. PowerType enum

Value Description

AC_1_PHASE AC single phase.

AC_2_PHASE AC two phases, only two of the three available phases connected.

121

Value Description

AC_2_PHASE_SPLIT AC two phases using split phase system.

AC_3_PHASE AC three phases.

DC Direct Current.

5.4.34. PresenceStatus enum

Whether an EVSE is currently present.

Value Description

PRESENT The EVSE is currently present and whether it is currently usable can be indicated using
the EVSE Status module.

PLANNED The EVSE is not currently present but it is planned for the future.

REMOVED The EVSE is not currently present but it is used to be present in the past.

5.4.35. PublishTokenType class

Defines the set of values that identify a token to which a Location might be published.

At least one of the following fields SHALL be set: uid, visual_number, or group_id.

When uid is set, type SHALL also be set.

When visual_number is set, issuer SHALL also be set.

Property Type Card. Description

uid CiAsciiString[1..36] ? Unique ID by which this Token can be identified.

type TokenType ? Type of the token.

visual_number UnicodeString[1..64] ? Visual readable number/identification as printed on the
Token (RFID card).

issuer UnicodeString[1..64] ? Issuing company, most of the times the name of the
company printed on the token (RFID card), not
necessarily the eMSP.

group_id CiAsciiString[1..36] ? This ID groups a couple of tokens. This can be used to
make two or more tokens work as one.

5.4.36. RegularHours class

Regular recurring operation or access hours.

Property Type Card. Description

weekday int[1] 1 Number of day in the week, from Monday (1) till Sunday
(7)

122

Property Type Card. Description

period_begin AsciiString[5] 1 Begin of the regular period, in local time, given in hours
and minutes. Must be in 24h format with leading zeros.
Example: "18:15". Hour/Minute separator: ":" Regex: ([0-
1][0-9]|2[0-3]):[0-5][0-9]. In this field, "00:00" means
midnight at the beginning of the day.

period_end AsciiString[5] 1 End of the regular period, in local time, syntax as for
period_begin. Must be later than period_begin or be
"00:00" to signal that the charging station is open until
midnight at the end of the day.

5.4.36.1. Handling midnight

The special meanings of the "00:00" value make that {"weekday": 6, "period_begin": "00:00", "period_end":

"00:00"} means that a Location is opened all 24 hours of Saturday.

The values of the weekday field are not required to be unique among the RegularHours objects in the regular_hours
field of the Hours object. This makes that an opening time window that stretches across midnight can be given by
including two entries in the regular_hours field of the Hours object like this:

...
"hours": [
 {"weekday": 6, "period_begin": "12:00", "period_end": "00:00"},
 {"weekday": 7, "period_begin": "00:00", "period_end": "02:00"},
 {"weekday": 7, "period_begin": "12:00", "period_end": "22:00"}
],
...

In the example above, the Location is open on Saturday from noon until 2 AM, and on Sunday from noon until 10 PM.

5.4.36.2. Example with exceptional opening hours

Operating on weekdays from 8am till 8pm with one exceptional opening on 22/6/2014 and one exceptional closing
the Monday after:

 "opening_times": {
 "regular_hours": [
 {
 "weekday": 1,
 "period_begin": "08:00",
 "period_end": "20:00"
 },
 {
 "weekday": 2,
 "period_begin": "08:00",
 "period_end": "20:00"
 },
 {
 "weekday": 3,
 "period_begin": "08:00",
 "period_end": "20:00"
 },
 {
 "weekday": 4,
 "period_begin": "08:00",
 "period_end": "20:00"

123

 },
 {
 "weekday": 5,
 "period_begin": "08:00",
 "period_end": "20:00"
 }
],
 "twentyfourseven": false,
 "exceptional_openings": [
 {
 "period_begin": "2014-06-21T09:00:00Z",
 "period_end": "2014-06-21T12:00:00Z"
 }
],
 "exceptional_closings": [
 {
 "period_begin": "2014-06-24T00:00:00Z",
 "period_end": "2014-06-25T00:00:00Z"
 }
]
 }

This represents the following schedule, where stroked out days are without operation hours, bold days are where
exceptions apply and regular displayed days are where the regular schedule applies.

Week
day

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

Date 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Open
from

08 08 08 08 08 09 - 08 - 08 08 08 - -

Open
till

20 20 20 20 20 12 - 20 - 20 20 20 - -

5.4.37. ReservationStatus enum

Error codes for reservation related errors.

Value Description

CANCELED_RESERVATION The Reservation has been canceled by the CPO.

DEVICE_OFFLINE Reservation for the requested EVSE requires remote communication to a
charging device and this remote communication link is not available.

EVSE_OCCUPIED EVSE is currently occupied, another session is ongoing. Cannot start a new
session.

EVSE_INOPERATIVE EVSE is currently inoperative or faulted.

NOT_SUPPORTED Reservations are not supported by the receiving Party or on the Location for
which one was requested.

UNKNOWN_RESERVATION The Reservation in the requested command is not known by the receiving Party.

124

5.4.38. ReserveNowRequest class

Property Type Card. Description

token Token 1 The Token for which Party Y should reserve an EVSE

expiry_date DateTime 1 The point in time at which this reservation ends

reservation_id CiAsciiString[1..36] 1 An identifier for this reservation

location_id CiAsciiString[1..36] 1 Location ID of the Location (belonging to the CPO this
request is sent to) for which to reserve an EVSE.

evse_uid CiAsciiString[1..36] ? Optional EVSE UID of the EVSE to reserve if a specific
EVSE has to be reserved.

authorization_reference CiAsciiString[1..36] ? Reference to the authorization given by the eMSP. When
given, this reference will be provided in the Session
and/or CDR that may eventually be transferred from
Party Y to Party X as a result of this reservation request.

5.4.39. ReservationError class

Property Type Card. Description

status ReservationStatus 1 An error code that signals why the reservation request
failed

message DisplayText * Human-readable description of the reason for the status
(if one can be provided), multiple languages can be
provided.

5.4.40. ResetEvseRequest class

Property Type Card. Description

location_id CiAsciiString[1..36] 1 The ID of the Location at which a device is to be reset

evse_uid CiAsciiString[1..36] 1 The value of the uid field of the EVSE of this Location for
which the device is requested to be reset

5.4.41. LocationService enum

An enumeration of services that are offered at the Location by the CPO or affiliated parties.

Value Description

ACCESSIBLE_CHARGING One or more EVSEs have accessibility modifications in place to allow use by people with
disabilities. Note that more information on accessibility modifications can be provided
using the various fields for images and in the parking field of the EVSE object.

ASSISTANCE Assistance from on-site staff is available to help a Driver charge at the Location.

CAMERA_SURVEILLANCE Security monitoring with video cameras is in place at the Location.

125

Value Description

EMERGENCY_CALL A voice communication channel is available for the Driver to contact security staff from
the Location.

WIFI WLAN Internet connectivity is available at the Location.

5.4.42. Status enum

The status of an EVSE.

Value Description

AVAILABLE The EVSE/Connector is able to start a new charging session.

BLOCKED The EVSE/Connector is not accessible because of a physical barrier, i.e. a car.

CHARGING The EVSE/Connector is in use.

INOPERATIVE The EVSE/Connector is not yet active, or temporarily not available for use, but not broken
or defect.

OUTOFORDER The EVSE/Connector is currently out of order, some part/components may be
broken/defect.

RESERVED The EVSE/Connector is reserved for a particular EV driver and is unavailable for other
drivers.

UNKNOWN No status information available (also used when offline).

5.4.43. StatusSchedule class

This type is used to schedule status periods in the future. The eMSP can provide this information to the EV user for
trip planning purposes. A period MAY have no end. A period without end can be used for example that after
construction completes tomorrow, a charging station will be available indefinitely.

Property Type Card. Description

period_begin DateTime 1 Begin of the scheduled period.

period_end DateTime ? End of the scheduled period, if known.

status Status 1 Status value during the scheduled period.

NOTE
The scheduled status is purely informational. When the status actually changes, the CPO must push
an update using the EVSE Status module just like for status changes that were not scheduled.

5.4.44. UnlockConnectorRequest class

Property Type Card. Description

location_id CiAsciiString[1..36] 1 The ID of the Location at which a Connector is to be
unlocked

126

Property Type Card. Description

evse_uid CiAsciiString[1..36] 1 The value of the uid field of the EVSE of this Location of
which it is requested to unlock the Connector.

connector_id CiAsciiString[1..36] 1 Identifier of the Connector of this Location of which it is
requested to unlock. This is the identifier found in the id
field of the Connector object.

5.4.45. VehicleType enum

A categorization of vehicles to indicate which type of vehicles can use a certain EVSE.

Value Description

MOTORCYCLE A motorcycle

PERSONAL_VEHICLE A personal vehicle, a passenger car

PERSONAL_VEHICLE_WITH_TRAILE
R

A personal vehicle with a trailer attached

VAN A light-duty van with a height smaller than 275 cm

TRUCK A heavy-duty truck without a trailer

TRUCK_WITH_TRAILER A heavy-duty truck with a trailer attached

BUS A bus or a motor coach

DISABLED A vehicle with a permit for parking spaces for people with disabilities

NOTE

It may seem surprising that OCPI uses a custom vehicle categorization scheme rather than one
defined in another specification. During OCPI 3.0 development it appeared however that existing
classifications, like the UNECE Classification and Definition of Vehicles, are overly detailed and
technical and offer little help in making clear which vehicles can use a certain EVSE. For OCPI 3.0 we
opted for a deliberately common sense based categorization that we believe will be easier to use for
Drivers and CPOs.

127

6. EVSE Status
This chapter describes the EVSE Status module.

An OCPI 3.0 module is a set of Functional Use Cases organised around a certain type of data object being replicated
from one party to another. In the EVSE Status module, the type of data object is the EVSE Status, a small object that
describes the current availability status of a particular EVSE. That is, these objects answer the question: can a Driver
currently charge come to this EVSE to charge there, and if not, why not?

This module is meant to be used together with the Locations module. The EVSE Status objects exchanged with the
EVSE Status module reference EVSEs exchanged with the Locations module. A Party that wants to know about all the
Locations of another Party and the statuses of the EVSEs of these Locations, will subscribe to both the Locations and
EVSE Status modules of that other Party.

Historically, the EVSE Status module was split off from the Locations module during the development of OCPI 3.0
based on OCPI 2.2.1. In OCPI 2.2.1 and earlier OCPI versions, the status of EVSEs was part of the Location objects.

The EVSE Status module was split off from the Locations module in order to allow Parties who are not interested in
live availability status information to not receive status updates. EVSE Status updates are very frequent and thus
processing all changes in EVSE Status in the network of a large CPO comes with costs and challenges that some
Locations subscribers may not be willing to bear.

6.1. Replicating EVSE Status objects

6.1.1. UC: 06.01 - Replicate EVSE status objects from one Party to another
Party

1 Objective(s) 1. Party X on a Platform A obtains and maintains up-to-date information of the availability
of the charging infrastructure offered by Party Y

2 Description Using the use cases of the Party-Issued Objects chapter, EVSE status objects are replicated
from Party Y to Party X

3 Actors eMSP, CPO, NAP, NSP

4 Flow 1. Party X subscribes to Party Y’s EVSE status objects
2. Party Y pushes all their EVSE status objects as of subscription time to Party X
3. Party Y pushes every newly updated EVSE status object to Party X as soon as these
updates happen
4. This continues until either party cancels the subscription

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s EVSE Status module to Party X on Platform A.

6 Postconditions Party X has up-to-date information on the EVSE Status objects of Party Y

7 Error reporting Error reporting happens according to the use cases in the Party-Issued Objects use cases.

8 Remark(s)

128

Table 32. UC: 06.01 Requirements

ID Precondition Requirement

R.06.01.
01

Platform A SHALL subscribe according to use case
Subscribe to the Party Issued Objects of a certain Module
of a certain Party, using "evsestatuses" as the ModuleID
value.

R.06.01.
02

Platforms A and B MAY also follow use cases Subscribe to
Party Issued Objects of a certain Module of a certain
Party as a Hub, Subscribe to Party Issued Objects of a
certain Module of a Hub or Subscribe to Party Issued
Objects of a certain Module of a Hub as a Hub while
subscribing according to R.06.01.01

R.06.01.
03

Platform B sends a Party Issued Object update
to Party X on Platform A according to use case
Send a full update of a Party Issued Object to a
Subscribed Platform in the context of the
subscription created according to R.06.01.01

Platform B SHOULD set the value of the "payload" field of
the PartyIssuedObjectUpdate object in the request body
to a JSON object that conforms to the EvseStatus object
type.

R.06.01.
04

Platform B sends a Party Issued Update update
to Party Y on Platform A according to use case
Send a full update of a Party Issued Object to a
Subscribed Platform in the context of the
subscription created according to R.06.01.01

The identifier of the Party Issued Object, that is the
values of the id field of the PartyIssuedObjectUpdate
objects, SHALL be set to the EVSE UIDs of the EVSE that
the status updates apply to. This is how EVSE Statuses
are related to the EVSEs from the Locations module.

NOTE

Parties subscribing to both the Locations and the EVSE Statuses of another Party may receive
Locations with EVSEs for which they have not yet received a status. They may also receive EVSE
Statuses for EVSEs that they have not yet received as part of a Location from the Locations module.
This is a logical consequence of splitting the Locations and EVSE Status modules and it is something
that subscribers will have to deal with on their side.

6.2. Remote Procedure Calls on EVSE Status objects
This module does not specify any Remote Procedure Calls.

6.3. Object type definitions

6.3.1. EvseStatus class

Property Type Card. Description

status Status 1 The current status of the EVSE

timestamp DateTime ? The timestamp of the moment that this Status came into
effect, as reported by the device. The sender platform
SHOULD NOT include this field unless a timestamp for
the status change was reported by the remote device
containing the EVSE.

129

7. Sessions
This chapter describes the Sessions module.

An OCPI 3.0 module is a set of Functional Use Cases organised around a certain type of data object being replicated
from one party to another. In the Sessions module, the type of data object is the Session. The name Session is short
for Charging Session. What a Charging Session is is defined in the Terminology section of the Business Use Cases
document. How a Charge Session is represented in OCPI messages is specified below.

When a CPO registers a charging Session in their systems, they push a Session object to the eMSP that issued the
Token that the Session was started with.

Sessions cannot be deleted. Instead Sessions become finalized and immutable when their status becomes COMPLETED.

For a lot of smart charging use cases, input from the driver is needed. The smart charging algorithms need to be able
to give certain Session priority over others. In other words they need to know how much energy an EV needs before
what time. The CPO can learn about the driver’s smart charging preferences via the default_profile_type field in the
Token object for the token used to start the Session. Alternatively the CPO can tell the MSP about the Driver’s
preferences while the Session is ongoing with the Change Charging Preferences functional use case .

The eMSP can determine if a Charging Station supports Charging Preferences by checking if the Charging Station
capabilities contains: CHARGING_PREFERENCES_CAPABLE.

Via Tariffs and Tariff Associations the CPO can give different Charging Preferences different prices.

When an EV driver makes a Reservation for a Charging Station/EVSE, the Sender SHALL create a new Session object
with status = RESERVED.

When a reservation results in a charging Session for the same Token, the Session’s status changes to ACTIVE.

When a reservation does not result in a charging Session, the Session object’s status SHALL be set to COMPLETED.

A CDR might be created even if no energy was transferred to the EV and no EV was ever present at or connected to
the Charging Station, just for the costs of the reservation.

7.1. Changes from OCPI 2.2.1
• Removed the country code and party ID, as from all Party Issued Objects, because these are now unambiguously

transferred using the Party Issued Object replication mechanism.

• Moved the StartSession and StopSession commands from the Commands module to the Sessions module.

• Included a "displayTariff" field in the StartSession command to allow an eMSP to tell the CPO what the eMSP will
charge the Driver.

• Added functionalities to let the eMSP make the CPO display a message on the Charging Station and to let the CPO
make the eMSP send a message to the Driver.

• Renamed kwh field to energy.

• Added tariff_id and tariff_association_id fields to Session object.

130

7.2. Replicating Session objects

7.2.1. UC: 07.01 - Replicate Session objects from one Party to another Party

1 Objective(s) 1. Party X on a Platform A obtains and maintains an up-to-date copy of the Session objects
that are issued by Party Y on a Platform B

2 Description Using the use cases of the Party-Issued Objects chapter, Session objects are replicated
from Party Y to Party X

3 Actors eMSP, CPO, Hub

4 Flow 1. Party X subscribes to Party Y’s Session objects
2. Party Y pushes every newly updated Session object to Party X as soon as these updates
happen
3. This continues until either party cancels the subscription

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Sessions to Party X on Platform A.

6 Postconditions Party X has up-to-date information on the Charge Sessions issued by Party Y

7 Error reporting Error reporting happens according to the use cases in the Party-Issued Objects use cases.

8 Remark(s)

Table 33. UC: 07.01 Requirements

ID Precondition Requirement

R.07.01.
01

Platform A SHALL subscribe according to use case
Subscribe to the Party Issued Objects of a certain Module
of a certain Party, using "sessions" as the ModuleID
value.

R.07.01.
02

Platforms A and B MAY also follow use cases Subscribe to
Party Issued Objects of a certain Module of a certain
Party as a Hub, Subscribe to Party Issued Objects of a
certain Module of a Hub or Subscribe to Party Issued
Objects of a certain Module of a Hub as a Hub while
subscribing according to R.07.01.01

R.07.01.
03

Platform B sends a Party Issued Object update
to Party X on Platform A according to use case
Send a full update of a Party Issued Object to a
Subscribed Platform in the context of the
subscription created according to R.07.01.01

Platform B SHOULD set the value of the "payload" field of
the PartyIssuedObjectUpdate object in the request body
to a JSON object that conforms to the Session object
type.

131

7.3. Remote Procedure Calls on Session Objects

7.3.1. UC: 07.02 - Start a Session

1 Objective(s) 1. Party X initiates a Charging Session on an EVSE at a Location issued by Party Y.

2 Description This use case is meant for situations where another company requests a CPO to start a
Session. The most common example is probably a Driver using a mobile phone app
provided by their eMSP to initiate a Charge Session. Another example would be a third
party providing customer support to the CPO, using a back-office UI to a start a Session for
a Driver who called them.

3 Actors eMSP, CPO

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains parameters indicating on which EVSE a Session is
to be started and which Charge Token should be associated with the Session. 2. Party Y
determines if it is willing to indeed start a Charging Session as requested.
3. Platform B responds to Platform A on behalf of Party Y to inform Party X if their request
was accepted.
4. If the request was accepted, Party Y proceeds to start the Charging Session.
5. If the request was accepted, Platform B sends a request to Platform A on behalf of Party
Y to inform Party X of the result of the session start request to the Charging Station.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Locations to Party X on Platform A.
Platform B serves Party Y’s Sessions to Party X on Platform A.

6 Postconditions One of these two:

* Party X knows Party Y rejected their attempt to start a Session at Party Y’s Locations.

* Party Y attempted to start a Session on a Charging Station at one of Party Y’s Locations
at Party X’s request. Also Party X knows whether this attempt was successful or not.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s) Party X will typically track the outcome of an attempt to start a Session by monitoring for
the three steps of execution that are communicated via OCPI:
1. A synchronous response is received, indicating that the CPO received and understood
the request.
2. An asynchronous response is received, indicating whether the charging device will
actually attempt to execute the request.
3. A Session object is received via Party Issued Object replication, indicating that the
charging device was successful in its attempt and the Session has begun.

132

Platform A Platform B

Let's assume that a party SKPTX served by Platform A is trying to start a Session on an EVSE
at a Location issued by a party BEPTY served by Platform B. Party SKPTX wants to do this to
handle the request to start charging that they received from the phone app running on the
phone of one of their Drivers.

POST /ocpi/from/SKPTX/to/BEPTY/sessions/start
+ Token ID
+ Location ID
+ EVSE ID
+ Connector ID
+ Authorization reference

Party Y checks if it is willing and able to let Party X start a Session as requested

HTTP 200 OK
+ status ACCEPTED

Party Y requests a session start from the Charging Station
(probably using an OCPP RequestStopTransaction request)
and learns the outcome from the charging station

POST /ocpi/from/BEPTY/to/SKPTX/async-responses/<callback ID>
+ result type SUCCESS

HTTP 200 OK

Figure 39. Sequence Diagram: Start a Session

Table 34. UC: 07.02 Requirements

ID Precondition Requirement

R.07.02.
01

Platform A SHALL make the request to start the Session
on an EVSE following Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.07.02.
02

Platform A SHALL use "start" as the operation name for
Make a Remote Procedure Call Allowing Asynchronous
Responses.

R.07.02.
03

Platform A SHALL use a StartSessionRequest in the
payload field of the in the payload field of AsyncRequest
object in the request body for Make a Remote Procedure
Call Allowing Asynchronous Responses.

R.07.02.
04

Party Y cannot or will not act upon the start
request because of the status of the EVSE or
the Connector or the device containing the
EVSE and the Connector

Platform B SHALL respond to Platform A’s request with a
response with ACCEPTED in the data field of the
OcpiResponse object. Platform B SHALL then send a
request with an AsyncResponse object with the payload
field unset and with the error field set to an appropriate
SessionCommandError object.

R.07.02.
05

Party Y received a confirmation from the
Charging Station that the start request will be
executed

Platform B SHALL send an asynchronous response with
the result_type field of the AsyncResponse object set to
SUCCESS, and the payload and error fields of this
AsyncResponse left unset.

R.07.02.
06

The evse_uid field of the StartSessionRequest is
not filled in in the request from Platform A

Party Y or the Charging Station can itself decide on which
EVSE to start a new session. This may not be supported
on all Charging Stations.

R.07.02.
07

A Session is started by Party Y as a result of the
request from Platform A

The Session SHALL be issued by Party Y with the token
set to the Token provided by Party X.

133

ID Precondition Requirement

R.07.02.
08

Party Y SHALL NOT check the validity of the Token
provided before sending the request to the Charging
Station. That is, Party X’s using the Token in a
StartSessionReequest already informs Party Y that the
Token is valid according to Party X at the moment Party X
starts this use case.

R.07.02.
09

Party Y receives a request from the Charging
Station to check the validity of the Token, e.g.
an OCPP Authorize request.

- If this Token is of type: AD_HOC_USER or APP_USER the CPO
SHALL NOT do a realtime authorization with Party X for
this Token.
- If this Token is of type: RFID, the CPO SHALL NOT do a
realtime authorization with Party X for this Token at the
given EVSE/Charging Station within 15 minutes after
having received this StartSession.
This means that if the driver decided to use his RFID
within 15 minutes at the same Charging Station, because
the app is not working somehow, the RFID is already
authorized.

R.07.02.
10

Party X MAY use a Token that has not been pushed via
the Token module. This typically happens with
AD_HOC_USER or APP_USER Tokens, which are only used in
start and stop requests sent by an eMSP. These are never
used locally at the Charging Station like RFID.

R.07.02.
11

Party X sent a Token in the
StartSessionRequest that they did not issue to
Party Y using Party Issued Object replication.

Platform B SHALL NOT store this token in their database
of Tokens issued by Party X to Party Y.

R.07.02.
12

Party X sent a Token in the
StartSessionRequest that they did not issue to
Party Y using Party Issued Object replication.

The information of the Token SHALL be included in the
Session and CDR objects about the session started for
Party X, despite the Token’s not being stored in the Party
Issued Object replication dataset as per R.07.02.11.

R.07.02.
13

Party X SHALL NOT use Tokens for this use case that
were issued to Party X by another Party. That is, Party X
shall not start a session on one of Party Y’s Locations
with a Token from a third Party.

7.3.2. UC: 07.03 - Stop a Session

1 Objective(s) 1. Party X stops a Charging Session on an EVSE at a Location issued by Party Y.

2 Description This use case is meant for situations where another company requests a CPO to stop a
Session. The most common example is probably a Driver using a mobile phone app
provided by their eMSP to stop a Charge Session. Another example would be a third party
providing customer support to the CPO, using a back-office UI to a stop a Session for a
Driver who called them.

3 Actors eMSP, CPO

134

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains the identifier of the session that is to be stopped.
2. Party Y determines if it is willing to indeed stop the Charging Session.
3. Platform B responds to Platform A on behalf of Party Y to inform Party X if their request
was accepted.
4. If the request was accepted, Party Y proceeds to stop the Charging Session.
5. If the request was accepted, Platform B sends a request to Platform A on behalf of Party
Y to inform Party X of the result of the session stop request to the Charging Station.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Sessions to Party X on Platform A.

6 Postconditions One of these two:

* Party X knows Party Y rejected their attempt to stop a Session at Party Y’s Locations.

* Party Y attempted to stop a Session on a Charging Station at one of Party Y’s Locations at
Party X’s request. Also Party X knows whether this attempt was successful or not.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s) Party X will typically track the outcome of an attempt to stop a Session by monitoring for
the three steps of execution that are communicated via OCPI:
1. A synchronous response is received, indicating that the CPO received and understood
the request.
2. An asynchronous response is received, indicating whether the charging device will
actually attempt to execute the request.
3. A Session object update is received via Party Issued Object replication, indicating that
the charging device was successful in its attempt and the Session status has changed to
COMPLETED.

Platform A Platform B

Let's assume that a party SKPTX served by Platform A is trying to stop a session on an EVSE
at a Location issued by a party BEPTY served by Platform B. Party SKPTX wants to do this to
handle the request to stop charging that they received from the phone app running on the
phone of one of their Drivers.

POST /ocpi/from/SKPTX/to/BEPTY/sessions/stop
+ Session ID

Party Y checks if it is willing and able to let Party X stop this session

HTTP 200 OK
+ status ACCEPTED

Party Y requests a session stop from the charging station
(probably using an OCPP RequestStopTransaction request)
and learns the outcome from the charging station

POST /ocpi/from/BEPTY/to/SKPTX/async-responses/<callback ID>
+ result type SUCCESS

HTTP 200 OK

Figure 40. Sequence Diagram: Stop a Session

135

Table 35. UC: 07.03 Requirements

ID Precondition Requirement

R.07.03.
01

Platform A SHALL make the request to stop the Session
on an EVSE following Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.07.03.
02

Platform A SHALL use "stop" as the operation name for
Make a Remote Procedure Call Allowing Asynchronous
Responses.

R.07.03.
03

Platform A SHALL use a StopSessionRequest in the
payload field of the in the payload field of AsyncRequest
object in the request body for Make a Remote Procedure
Call Allowing Asynchronous Responses.

R.07.03.
04

Party Y cannot or will not act upon the stop
request because of the status of the EVSE or
the Connector or the device containing the
EVSE and the Connector

Platform B SHALL respond to Platform A’s request with a
response with ACCEPTED in the data field of the
OcpiResponse object. Platform B SHALL then send a
request with an AsyncResponse object with the payload
field unset and with the error field set to an appropriate
SessionCommandError object.

R.07.03.
05

Party Y got a confirmation from the Charging
Station that the stop request will be executed

Platform B SHALL send an asynchronous response with
the result_type field of the AsyncResponse object set to
SUCCESS, and the payload and error fields of this
AsyncResponse left unset.

7.3.3. UC: 07.04 - Change Charging Preferences

1 Objective(s) 1. Party Y switches to a different objective for smart charging optimization for a Session in
which a Driver related to Party X is charging.

2 Description This use case allows the eMSP (Party X) to inform the CPO (Party Y) of what the eMSP
would like the CPO to optimize for with smart charging. This is done by sending a
ProfileType value to the CPO.

3 Actors eMSP, CPO

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains the ProfileType that Party X would like Party Y to
use for the session.
2. Party Y determines if it is willing to switch to the requested profile type.
3. If Party Y switches if it is indeed willing to.
4. Platform B responds to Platform A on behalf of Party Y to inform Party X if their request
was executed.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Sessions to Party X on Platform A.

136

6 Postconditions One of these two:

* Party X knows Party Y rejected their attempt to change the charging preferences.

* Party Y changed the charging preferences that are optimized for in the smart charging
of the Session.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

Platform A Platform B

Let's assume that a driver of eMSP DEPTX is charging at a Charging Station of CPO PLPTY.
Let's assume also that PLPTY will accept the request to change charging preferences.

POST /ocpi/from/DEPTX/to/PLPTY/sessions/change-charging-preferences
+ Session ID
+ Profile Type

PLPTY checks if it is willing to do
smart charging as requested by DEPTX.

PLPTY applies the new profile type for smart charging.

HTTP 200 OK
+ status code 1000

Figure 41. Sequence Diagram: Change Charging Preferences

Table 36. UC: 07.04 Requirements

ID Precondition Requirement

R.07.04.
01

Platform A SHALL make the request to reserve an EVSE
following Make a Remote Procedure Call on behalf of a
Party to another Party on another Platform.

R.07.04.
02

Platform A SHALL use "change-charging-preferences" as
the operation name for Make a Remote Procedure Call
on behalf of a Party to another Party on another
Platform.

R.07.04.
03

Platform A SHALL use POST as the HTTP request verb
when making its request.

R.07.04.
04

Platform A SHALL use a
ChangeChargingPreferencesRequest in the request body
for Make a Remote Procedure Call on behalf of a Party to
another Party on another Platform.

R.07.04.
05

Platform B SHALL include a
ChangeChargingPreferencesResponse in the data field of
the OcpiResponse object in the response body according
to Make a Remote Procedure Call on behalf of a Party to
another Party on another Platform.

137

7.3.4. UC: 07.05 - Notify Session receiver of the active Charging Profile

1 Objective(s) 1. Party X (typically an eMSP) learns the active Charging Profile that Party Y (typically a
CPO) is using for a Charging Session, so that Party X can inform the Driver of the charging
speed that they should expect.

2 Description The CPO (Party Y) makes a remote procedure call to the eMSP (Party X) to send them the
active Charging Profile.

3 Actors eMSP, CPO

4 Flow 1. Platform B makes a request on behalf of Party Y to Platform A receiving the request on
behalf of Party X. This request contains the ChargingProfile that Party Y is using for the
Charging Session.
2. Platform A sends a response to Platform B acknowledging that it received the request.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Sessions to Party X on Platform A.

6 Postconditions Party X knows the active Charging Profile that Party Y is using for a certain Charging
Session.

7 Error handling Error reporting by Platform A follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

Platform A Platform B

Let's assume that a driver of eMSP DEPTX is charging at a Charging Station of CPO PLPTY.
DEPTX is hosted by Platform A and PLPTY is hosted by Platform B.

PLPTY applies a Charging Profile
to the Charging Session

POST /ocpi/from/PLPTY/to/DEPTX/sessions/notify-active-charging-profile
+ Session ID
+ Charging Profile

DEPTX stores the Charging Profile
so they can display it to their Driver

HTTP 200 OK
+ status code 1000

Figure 42. Sequence Diagram: Notify Session receiver of the active Charging Profile

Table 37. UC: 07.05 Requirements

138

ID Precondition Requirement

R.07.05.
01

Platform B SHALL make the request to notify Platform A
of the current Charging Profile following Make a Remote
Procedure Call on behalf of a Party to another Party on
another Platform.

R.07.05.
02

Platform B SHALL use "notify-active-charging-profile" as
the operation name for Make a Remote Procedure Call
on behalf of a Party to another Party on another
Platform.

R.07.05.
03

Platform B SHALL use POST as the HTTP request verb
when making its request.

R.07.05.
04

Platform B SHALL use a
NotifyActiveChargingProfileRequest in the request body
for Make a Remote Procedure Call on behalf of a Party to
another Party on another Platform.

R.07.05.
05

Platform A SHALL leave the data field unset in the
OcpiResponse object in the response body according to
Make a Remote Procedure Call on behalf of a Party to
another Party on another Platform.

7.3.5. UC: 07.06 - Send Message for Driver About Session to eMSP

1 Objective(s) 1. An eMSP receives a message for a Driver of theirs from a CPO so that they can notify the
Driver of some event at the Charging Station.

2 Description The CPO (Party Y) makes a remote procedure call to the eMSP (Party X) to send them the
message for the Driver.

3 Actors eMSP, CPO

4 Flow 1. Platform B makes a request on behalf of Party Y to Platform A receiving the request on
behalf of Party X. This request contains the message that the CPO wants the Driver to see.
2. Platform A sends a response to Platform B acknowledging that it received the request.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Sessions to Party X on Platform A.
The session about which Party Y wants to send a message has been replicated from Party
Y to Party X.

6 Postconditions Party X has a message from Party Y. Party X knows that Party Y wants the Driver to see the
message.

7 Error handling Error reporting by Platform A follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

139

Platform A Platform B

Let's assume that a driver of eMSP DEPTX is charging at a Charging Station of CPO PLPTY.
DEPTX is hosted by Platform A and PLPTY is hosted by Platform B.

PLPTY notices something
of which they want to notify
the Driver.

POST /ocpi/from/PLPTY/to/DEPTX/sessions/send-driver-message
+ Session ID
+ message

HTTP 200 OK
+ status code 1000

DEPTX sends the message to the Driver using a method of their choosing.

Figure 43. Sequence Diagram: Send Message for Driver About Session to eMSP

Table 38. UC: 07.06 Requirements

ID Precondition Requirement

R.07.06.
01

Platform B SHALL make the request to send Platform A a
message for a Driver according to Make a Remote
Procedure Call on behalf of a Party to another Party on
another Platform.

R.07.06.
02

Platform B SHALL use "send-driver-message" as the
operation name for Make a Remote Procedure Call on
behalf of a Party to another Party on another Platform.

R.07.06.
03

Platform B SHALL use POST as the HTTP request verb
when making its request.

R.07.06.
04

Platform B SHALL use a
NotifyActiveChargingProfileRequest in the request body
for Make a Remote Procedure Call on behalf of a Party to
another Party on another Platform.

R.07.06.
05

Platform A SHALL leave the data field unset in the
OcpiResponse object in the response body according to
Make a Remote Procedure Call on behalf of a Party to
another Party on another Platform.

R.07.06.
06

The Session ID in the
SendDriverMessageRequest in the request
body identifies a Session by a Driver of Party X

Party X SHOULD try to notify the Driver by
communication methods that they have at their disposal,
like for example a mobile push notification or an email.

R.07.06.
07

Party X SHOULD NOT wait for the delivery of the
message to the Driver as in R.07.06.06 before
responding to Party Y’s request.

140

7.3.6. UC: 07.07 - Send Message for Driver About Session to CPO

1 Objective(s) 1. An eMSP sends a message for a Driver of theirs to a CPO so that the CPO can display the
message on the Charging Station.

2 Description The eMSP (Party X) makes a remote procedure call to the CPO (Party Y) to send them the
message to be displayed on the Charging Station.

3 Actors eMSP, CPO

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains the message that the eMSP wants the CPO to
display on the Charging Station.
2. Platform B sends a response to Platform A acknowledging that it received the request.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Sessions to Party X on Platform A.
The session about which Party X wants to send a message has been replicated from Party
Y to Party X.

6 Postconditions Party Y has a displayed from Party X on the Charging Station where a Driver of Party X’s is
charging.

or

Party X knows that Party Y cannot or will not display the message on their Charging
Station.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

Platform A Platform B

Let's assume that a party SKPTX served by Platform A is trying to make a
Charging Station display a message about a Session on an EVSE at a
Location issued by a party BEPTY served by Platform B.

POST /ocpi/from/SKPTX/to/BEPTY/sessions/send-station-message
+ Session ID
+ message

Party Y checks if it is willing and able to let Party X display a message as requested

HTTP 200 OK
+ status ACCEPTED

Party Y requests the Charging Station to display the message
(probably using an OCPP SetDisplayMessage request)
and learns the outcome from the charging station

POST /ocpi/from/BEPTY/to/SKPTX/async-responses/<callback ID>
+ result type SUCCESS

HTTP 200 OK

Figure 44. Sequence Diagram: Send Message for Driver About Session to CPO

Table 39. UC: 07.07 Requirements

141

ID Precondition Requirement

R.07.07.
01

Platform A SHALL make the request to display the
message on a Charging Station following Make a Remote
Procedure Call Allowing Asynchronous Responses.

R.07.07.
02

Platform A SHALL use "send-station-message" as the
operation name for Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.07.07.
03

Platform A SHALL use a SendDriverMessageRequest in
the payload field of the in the payload field of
AsyncRequest object in the request body for Make a
Remote Procedure Call Allowing Asynchronous
Responses.

R.07.07.
04

Party Y got a confirmation from the Charging
Station that the request to display a message
will be executed

Platform B SHALL send an asynchronous response with
the result_type field of the AsyncResponse object set to
SUCCESS, and the payload and error fields of this
AsyncResponse left unset.

7.4. Data types

7.4.1. ChargingPreferences class

Contains the charging preferences of an EV driver.

Property Type Card
.

Description

session_id CiAsciiString[1..36] 1 The identifier of the session for which charging preferences
are to be set.

profile_type ProfileType 1 Type of Smart Charging Profile selected by the driver. The
ProfileType has to be supported at the Connector and for
every supported ProfileType, a Tariff MUST be provided. This
gives the EV driver the option between different pricing
options.

departure_time DateTime ? Expected departure. The driver has given this Date/Time as
expected departure moment. It is only an estimation and
not necessarily the Date/Time of the actual departure.

energy_need number ? Requested amount of energy in kWh. The EV driver wants to
have this amount of energy charged.

discharge_allowed boolean ? The driver allows their EV to be discharged when needed, as
long as the other preferences are met: EV is charged with
the preferred energy (energy_need) until the preferred
departure moment (departure_time). Default if omitted: false

142

7.4.2. ChargingPreferencesResponse enum

An enum with possible responses to a Change Charging Preferences RPC call.

Value Description

ACCEPTED Charging Preferences accepted, EVSE will try to accomplish them,
although this is no guarantee that they will be fulfilled.

DEPARTURE_REQUIRED CPO requires departure_time to be able to perform Charging
Preference based Smart Charging.

ENERGY_NEED_REQUIRED CPO requires energy_need to be able to perform Charging Preference
based Smart Charging.

NOT_POSSIBLE Charging Preferences contain a demand that the EVSE knows it cannot
fulfill.

PROFILE_TYPE_NOT_SUPPORTED profile_type contains a value that is not supported by the EVSE.

CHARGING_PREFERENCES_NOT_SUPPORTE
D

Charging preferences are not supported on the Charging Station, that
is, it does not have the capability CHARGING_PREFERENCES_CAPABLE.

7.4.3. NotifyActiveChargingProfileRequest class

A request made by a Party who is a Session sender to notify the Session receiver of a Charging Profile that is being
applied to a Session.

Property Type Card
.

Description

session_id CiAsciiString[1..36] 1 The ID of the Session to which the Charging Profile applies.

charging_profile ChargingProfile 1 The Charging Profile that applies to the Session.

7.4.4. SendDriverMessageRequest class

A request made by one Party who is a Session sender or receiver to notify another Party of something that the one
Party wants the other Party to show to the Driver.

Property Type Card
.

Description

session_id CiAsciiString[1..36] 1 The ID of the Session for which a message is to be shown to
the Driver.

messages DisplayText + Messages to be shown. There can be multiple DisplayText
values so that the Session sender can send the same
message in different languages.

7.4.5. Session class

The Session object describes one charging session. That doesn’t mean it is required that energy has been transferred
between EV and the Charging Station. It is possible that the EV never took energy from the Charging Station because

143

it was instructed not to take energy by the driver. But as the EV was connected to the Charging Station, some form of
start tariff, park tariff or reservation cost might be relevant.

NOTE Although OCPI supports such pricing mechanisms, local laws might not allow this.

It is recommended to add enough ChargingPeriods to a Session so that the eMSP is able to provide feedback to the EV
driver about the progress of the charging session. The ideal amount of transmitted Charging Periods depends on the
charging speed. The Charging Periods should be sufficient for useful feedback but they should not generate too
much unneeded traffic either. How many Charging Periods are transmitted is left to the CPO to decide. The following
are just some points to consider:

• Adding a new Charging Period every minute for an AC charging session can be too much as it will yield 180
Charging Periods for an (assumed to be) average 3h session.

• A new Charging Period every 30 minutes for a DC fast charging session is not enough as it will yield only one
Charging Period for an (assumed to be) average 30min session.

It is also recommended to add Charging Periods for all moments that are relevant for the Tariff changes, see CDR
object description for more information.

Property Type Card
.

Description

start_date_time DateTime 1 The timestamp when the session became ACTIVE in the
Charging Station.
When the session is still PENDING, this field SHALL be set to
the time the Session was created at the Chrging Station.
When a Session goes from PENDING to ACTIVE, this field
SHALL be updated to the moment the Session went to
ACTIVE in the Charging Station.

end_date_time DateTime ? The timestamp when the session was completed/finished,
charging might have finished before the session ends, for
example: EV is full, but parking cost also has to be paid.

energy decimal 1 How many kWh of energy were transferred through the
EVSE into the vehicle.

cdr_token CdrToken 1 Token used to start this charging session, including all the
relevant information to identify the unique token.

auth_method AuthMethod 1 Method used for authorization. This might change during a
session. This can happen for example when the session was
started with a reservation according to use case Reserve an
EVSE at a Location. Initially the authorization method will be
COMMAND which changes to WHITELIST when the driver arrives
and starts charging using a Token that is whitelisted.

144

Property Type Card
.

Description

authorization_reference CiAsciiString[1..36] ? Reference to the authorization given by the eMSP. When the
eMSP provided an authorization_reference in either: real-
time authorization, Start a Session or Reserve an EVSE at a
Location this field SHALL contain the same value. When
different authorization_reference values have been given by
the eMSP that are relevant to this Session, the last given
value SHALL be used here.

location_id CiAsciiString[1..36] 1 Location ID of the Location object of this CPO, on which the
charging session is/was happening.

connector SessionConnector ? The Connector that the Session happened on. This is allowed
to be unset if and only if the Session is created for a
reservation for which no EVSE has been assigned yet.

meter_id AsciiString[1..255] ? Optional identification of the kWh meter.

currency CiAsciiString[3] 1 ISO 4217 code of the currency used for this session.

charging_periods ChargingPeriod * An optional list of Charging Periods that can be used to
calculate and verify the total cost.

tariff_association_id Tariff 1 The ID of the Tariff Association that was used to look up the
Tariff of this Session. When the session is free, the ID of a
Tariff Association for a Free of Charge tariff is to be given in
this field.

tariff_id Tariff 1 The ID of the Tariff that was used to compute what this
Session costs. When the session is free, the ID of a Free of
Charge tariff is to be given in this field.

total_cost Price ? The total cost of the session in the specified currency. This is
the price that the eMSP will have to pay to the CPO. A
total_cost of 0.00 means free of charge. When omitted, i.e.
no price information is given in the Session object, it does
not imply the session is/was free of charge.

status SessionStatus 1 The status of the session.

last_updated DateTime 1 Timestamp when this Session was last updated (or created).

7.4.5.1. Examples

Simple Session example of just starting a session

{
 "start_date_time": "2020-03-09T10:17:09Z",
 "energy": 0.0,
 "cdr_token": {
 "country_code": "NL",
 "party_id": "TST",
 "uid": "123abc",
 "type": "RFID",
 "contract_id": "NL-TST-C12345678-S"

145

 },
 "auth_method": "WHITELIST",
 "location_id": "LOC1",
 "evse_uid": "3256",
 "connector_id": "1",
 "tariff_association_id": "TAC1",
 "tariff_id": "TAR1",
 "currency": "EUR",
 "total_cost": {
 "before_taxes": 2.5
 },
 "status": "PENDING",
 "last_updated": "2020-03-09T10:17:09Z"
}

Simple Session example of a short finished session

{
 "start_date_time": "2015-06-29T22:39:09Z",
 "end_date_time": "2015-06-29T23:50:16Z",
 "energy": 41.12,
 "cdr_token": {
 "country_code": "NL",
 "party_id": "TST",
 "uid": "123abc",
 "type": "RFID",
 "contract_id": "NL-TST-C12345678-S"
 },
 "auth_method": "WHITELIST",
 "location_id": "LOC1",
 "evse_uid": "3256",
 "connector_id": "1",
 "tariff_association_id": "TAC1",
 "tariff_id": "TAR1",
 "currency": "EUR",
 "charging_periods": [{
 "start_date_time": "2015-06-29T22:39:09Z",
 "dimensions": [{
 "type": "ENERGY",
 "volume": 120
 }, {
 "type": "MAX_CURRENT",
 "volume": 30
 }]
 }, {
 "start_date_time": "2015-06-29T22:40:54Z",
 "dimensions": [{
 "type": "ENERGY",
 "volume": 41000
 }, {
 "type": "MIN_CURRENT",
 "volume": 34
 }]
 }, {
 "start_date_time": "2015-06-29T23:07:09Z",
 "dimensions": [{
 "type": "TIME",
 "volume": 0.718
 }]
 }],
 "total_cost": {
 "before_taxes": 8.50,
 "taxes": [{
 "name": "VAT",
 "amount": 0.85
 }]
 },

146

 "status": "COMPLETED",
 "last_updated": "2015-06-29T23:50:17Z"
}

7.4.6. ProfileType enum

Different smart charging profile types.

Value Description

CHEAP Driver wants to use the cheapest charging profile possible.

FAST Driver wants his EV charged as quickly as possible and is willing to pay a premium for
this, if needed.

GREEN Driver wants his EV charged with as much regenerative (green) energy as possible.

REGULAR Driver does not have special preferences.

7.4.7. SessionCommandError class

Property Type Card
.

Description

status SessionCommandS
tatus

1 An error code that signals why the requested operation was
not executed or failed

message DisplayText * Human-readable description of the reason for the status (if
one can be provided), multiple languages can be provided.

7.4.8. SessionCommandStatus enum

Value Description

DEVICE_OFFLINE The operation could not be performed because remote communication is not
available to the device that has to execute the operation.

EVSE_OCCUPIED The operation could not be performed because the EVSE that the operation was
requested on is occupied.

EVSE_INOPERATIVE The operation could not be performed because the EVSE that the operation was
requested on is inoperative.

7.4.9. SessionConnector class

A reference to the Connector that a Session happened on.

Property Type Card. Description

evse_uid CiAsciiString[
1..36]

1 EVSE.uid of the EVSE of this Location on which the charging session
is/was happening.

connector_id CiAsciiString[
1..36]

1 Connector ID of the Connector of this Location where the charging
session is/was happening.

147

7.4.10. SessionStatus enum

Defines the state of a session.

Value Description

ACTIVE The session has been accepted and is active. All pre-conditions were met:
Communication between EV and EVSE (for example: cable plugged in correctly), EV or
driver is authorized. EV is being charged, or can be charged. Energy is, or is not, being
transfered.

COMPLETED The session has been finished successfully. No more modifications will be made to the
Session object using this state.

INVALID The Session object using this state is declared invalid and will not be billed.

PENDING The session is pending, it has not yet started. Not all pre-conditions are met. This is the
initial state. The session might never become an active session.

RESERVATION The session is started due to a reservation, charging has not yet started. The session
might never become an active session.

7.4.11. StartSession class

Property Type Card. Description

response_url URL 1 URL that the CommandResult POST should be sent to. This URL
might contain a unique ID to be able to distinguish between
StartSession requests.

token Token 1 Token object the Charging Station has to use to start a new
session. The Token provided in this request is authorized by the
eMSP.

location_id CiAsciiString[
1..36]

1 Location ID of the Location (belonging to the CPO this request is
sent to) on which a session is to be started.

evse_uid CiAsciiString[
1..36]

? Optional EVSE uid of the EVSE of this Location on which a session
is to be started. Required when connector_id is set.

connector_id CiAsciiString[
1..36]

? Optional Connector ID of the Connector of the EVSE on which a
session is to be started. This field is required when the
capability: START_SESSION_CONNECTOR_REQUIRED is set on the
Charging Station.

authorization_reference CiAsciiString[
1..36]

? Reference to the authorization given by the eMSP, when given,
this reference will be provided in the relevant Session and/or
CDR.

148

Property Type Card. Description

display_tariff Tariff ? The Tariff that will be charged by the eMSP to the Driver, to be
displayed on the Charging Station. This added because
regulations in the US State of California require that a Driver see
on the Charging Station what they will be paying when they start
a Charging Session.
This field can also be used in combination with IEC 15118 to
provide pricing information from the Charging Station to the
vehicle.
Where these two use cases do not apply, this field may be left
empty.

NOTE

In case of an OCPP 1.x Charging Station, the EVSE ID should be mapped to the connector ID of a
Charging Station. OCPP 1.x does not have good support for Charging Stations that have multiple
connectors per EVSE. To make StartSession over OCPI work, the CPO SHOULD present the different
connectors of an EVSE as separate EVSE, as is also written by the OCA in the application note:
"Multiple Connectors per EVSE in a OCPP 1.x implementation".

7.4.12. StopSessionRequest class

Property Type Card
.

Description

session_id CiAsciiString[1..36] 1 Session ID of the Session that is requested to be stopped.

149

8. CDRs

8.1. Introduction
This chapter describes the CDRs module.

An OCPI 3.0 module is a set of Functional Use Cases organised around a certain type of data object being replicated
from one party to another. In the CDRs module, the type of data object is the CDR. CDR stands for Charge Detail
Record.

A Charge Detail Record is the description of a concluded charging session. The CDR is the only billing-relevant object.
CDRs are sent from the CPO to the eMSP after the charging session has ended.

Although there is no requirement to send CDRs in near realtime, it is seen as good practice to send them as soon as
possible. But if there is an agreement between parties to send them, for example, once a month, that is also allowed
by OCPI.

CDRs are created by the CPO. They most likely will be sent only to the eMSP that needs to compensate the CPO for the
underlying charging session. Because a CDR is for billing purposes, it cannot be changed or replaced once sent to the
eMSP. Changes are simply not allowed. Instead, a Credit CDR can be sent.

CDRs may be sent for charging locations that have not been published via the Location module. This is typically for
home chargers.

8.1.1. Credit CDRs

As CDRs are used for billing and can be seen as a kind of invoice, they cannot be deleted. Instead, they have to be
credited.

When a CPO wants to make changes to a CDR that was already sent to the eMSP, the CPO has to send a Credit CDR
for the first CDR. How to do this is described in the use case Send a Credit CDR.

8.1.2. Replication model

When the CPO creates CDR(s) they push them to the relevant eMSP with Party Issued Object replication. A CPO is not
required nor expected to send all CDRs to all eMSPs. Typically a CPO will only send a certain CDR to the eMSP that the
CDR is relevant to.

CDRs should contain enough information (dimensions) to allow the eMSP to validate the total cost.

If an eMSP cannot validate the cost of the CDR, or their cost calculation gives a different outcome from the cost given
in the CDR object from the CPO, they can disupte the CDR with the Dispute a CDR use case.

Note that an eMSP might have a very different contract/pricing model with their EV drivers than the tariff structure of
the CPO. The cost given in the CDR object is what the eMSP owes the CPO for the Charging Session.

8.1.3. Changes from OCPI 2.2.1

• The country_code, party_id and id fields were removed as they were from all Party Issued Objects. These fields
are now given in the Party Issued Object Update object in the request that pushes the Tariff object.

150

• Added functionality of disputing a CDR.

• Added a specification of how an eMSP can check the cost of a CDR that the CPO computed.

• Added a decimal number type to use for costing-related numbers.

• Added tariff_id and tariff_association_id fields to the CDR object.

• Added a token_version field to the CdrToken object so CPO can inform eMSP of which version of the Token it used
for whitelist authorization.

8.2. Replicating CDR objects

8.2.1. UC: 08.01 - Replicate CDR objects from one Party to another Party

1 Objective(s) 1. Party X on a Platform A obtains a copy of the CDR objects that are issued to them by
Party Y on a Platform B

2* Description Using the use cases of the Party-Issued Objects chapter, CDR objects are replicated from
Party Y to Party X. Unlike most other Party Issued Objects, CDRs are never updated after
being issued.

3 Actors eMSP, CPO, Hub

4 Flow 1. Party X subscribes to Party Y’s CDR objects
3. Party Y pushes every newly created CDR object to Party X as soon as these updates
happen
4. This continues until either party cancels the subscription

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s CDRs to Party X on Platform A.

6 Postconditions Party X has up-to-date information on the CDRs issued by Party Y

7 Error reporting Error reporting happens according to the use cases in the Party-Issued Objects use cases.

8 Remark(s)

Table 40. UC: 08.01 Requirements

ID Precondition Requirement

R.08.01.
01

Platform A SHALL subscribe according to use case
Subscribe to the Party Issued Objects of a certain Module
of a certain Party, using "cdrs" as the ModuleID value.

R.08.01.
02

Platforms A and B MAY also follow use cases Subscribe to
Party Issued Objects of a certain Module of a certain
Party as a Hub, Subscribe to Party Issued Objects of a
certain Module of a Hub or Subscribe to Party Issued
Objects of a certain Module of a Hub as a Hub while
subscribing according to R.08.01.01

151

ID Precondition Requirement

R.08.01.
03

Platform B sends a Party Issued Update update
to Party Y on Platform A according to use case
Send a full update of a Party Issued Object to a
Subscribed Platform in the context of the
subscription created according to R.08.01.01

Platform B SHOULD set the value of the "payload" field of
the PartyIssuedObjectUpdate object in the request body
to a JSON object that conforms to the CDR object type.

8.2.2. UC: 08.02 - Send a Credit CDR

1 Objective(s) 1. Party Y on Platform B informs Party X on Platform A that Party Y wants to credit a CDR
that they issued to Party X earlier.

2 Description This use case allows the CPO (Party Y) to inform the eMSP (Party X) that one of Party Y’s
CDRs was in error and Party Y would like to settle the Session differently. This is done by
sending a second CDR object that references the credited CDR object and signals to Party
X that, if possible, they should not bill the CDR, or undo any billing of it that they already
did.

3 Actors eMSP, CPO, Hub

4 Flow 1. Party Y on Platform B issues a credit CDR to Party X on Platform A using the Party Issued
Object replication use cases.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Party X on Platform A is subscribed to the CDRs module of Party Y on Platform B.
Party Y previously issued a CDR to Party X that they now wish to credit.

6 Postconditions Party X knows Party Y credited one of Party Y’s CDRs, and
Party Y knows Party X received Party Y’s credit CDR.

7 Error reporting Error reporting happens according to the use cases in the Party-Issued Objects use cases.

8 Remark(s)

152

Platform A Platform B

Let's assume that someone charged with a charge token from a Party MXPTX
hosted on Platform A on a charging station operated by a Party CAPTY hosted
on Platform B.

Before this use case proper

Issue CDR
+ ID: 2348905729
+ CDR Party ID: CAPTY
+ Token Party ID: MXPTX

Acknowledges

Party Y realizes that there is something
wrong with CDR 2348905729 that they issued.

Issue CDR
+ ID: 2348905729-C
+ credit: true
+ credit_reference_id: 2348905729

Acknowledges

Figure 45. Sequence Diagram: Send a Credit CDR

Table 41. UC: 08.02 Requirements

ID Precondition Requirement

R.08.02.
01

Platform B SHALL make the request to issue a credit CDR
for Party Y according to the requirements listed for every
CDR in Replicate a CDR.

R.08.02.
02

Platform B SHALL set the id field of the
PartyIssuedObjectUpdate object in their request to
Platform A to something different from the value of the
Party Issued Object ID of the credited CDR.

R.08.02.
03

Platform B MAY set the id field of the
PartyIssuedObjectUpdate object in their request to
Platform A to the value of the Party Issued Object ID of
the credited CDR with a string of up to three code points
appended.

R.08.02.
04

Platform B MAY set the id field of the
PartyIssuedObjectUpdate object in their request to
Platform A to a completely different number compared
to the ID of the credited CDR.

R.08.02.
05

Platform B SHALL set the credit field of the CDR object in
their request to true to indicate that a CDR is a Credit
CDR.

153

ID Precondition Requirement

R.08.02.
06

The Credit CDR references the old CDR via the
credit_reference_id field, which SHALL contain the id of
the original CDR.

R.08.02.
07

The values in the total_cost field SHALL contain the
negative amounts of the credited CDR.

R.08.02.
08

Except where requirements R.08.02.01 through
R.08.02.07 require something else, the Credit CDR
SHOULD contain all the same data as the original CDR
object.

R.08.02.
09

After having sent the Credit CDR, the CPO MAY send a
new CDR for the same Session that the credited CDR was
for, with a new unique ID, and with the fields credit and
credit_reference_id omitted.

NOTE
How far back in time a CPO can send a Credit CDR is not defined by OCPI. It is up the business
contracts between the different parties involved, as there might be local laws involved etc.

8.2.3. Example of a CDR

{
 "start_date_time": "2015-06-29T21:39:09Z",
 "end_date_time": "2015-06-29T23:37:32Z",
 "cdr_token": {
 "party_id": "DETNM",
 "uid": "012345678",
 "type": "RFID",
 "contract_id": "DE8ACC12E46L89"
 },
 "auth_method": "WHITELIST",
 "cdr_location": {
 "id": "LOC1",
 "name": "Gent Zuid",
 "address": {
 "address": "F.Rooseveltlaan 3A",
 "city": "Gent",
 "postal_code": "9000",
 "country": "BEL",
 "coordinates": {
 "latitude": "3.729944",
 "longitude": "51.047599"
 }
 },
 "evse_uid": "3256",
 "evse_id": "BE*BEC*E041503003",
 "connector_id": "1",
 "connector_standard": "IEC_62196_T2",
 "connector_format": "SOCKET",
 "connector_power_type": "AC_1_PHASE"
 },
 "currency": "EUR",
 "tariff_association_id": "TAC1",
 "tariff_id": "TAR1",
 "charging_periods": [{
 "start_date_time": "2015-06-29T21:39:09Z",
 "dimensions": [{
 "type": "TIME",

154

 "volume": 1.973
 }]
 }],
 "total_cost": {
 "before_taxes": 3.95,
 "taxes": [
 {
 "name": "VAT",
 "amount": 0.39
 }
]
 },
 "total_energy": 15.342,
 "total_time": 1.973,
 "total_time_cost": {
 "before_taxes": 3.95,
 "taxes": [
 {
 "name": "VAT",
 "amount": 0.39
 }
]
 },
 "last_updated": "2015-06-29T22:01:13Z"
}

8.3. Remote Procedure Calls on CDR Objects

8.3.1. UC: 08.03 - Dispute a CDR

1 Objective(s) 1. Party X on Platform A notifies Party Y on Platform B that Party X disputes a CDR that
Party Y issued to Party X.

2 Description This use case allows the eMSP (Party X) to inform the CPO (Party Y) that they think there is
some sort of error with a CDR that Party Y issued to Party X.

3 Actors eMSP, CPO, Hub

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains the identifier of the CDR that Party X disputes.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Party Y issued a CDR to Party X.

6 Postconditions Party Y knows that Party X disputes a CDR of theirs.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

155

Platform A Platform B

Let's assume that someone charged with a charge token from a Party NLPTX
hosted on Platform A on a charging station operated by a Party LUPTY hosted
on Platform B.

Before this use case proper

Issue CDR
+ ID: 2348905729
+ CDR Party ID: LUPTY
+ Token Party ID: NLPTX

Acknowledges

Checks CDR for impossibilities and checks the cost calculation.

Let's assume that Party X sees a problem with the CDR.

Dispute CDR
+ CDR ID 2348905729

Acknowledges

Figure 46. Sequence Diagram: Dispute a CDR

Table 42. UC: 08.03 Requirements

ID Precondition Requirement

R.08.03.
01

Platform A SHALL make the request to dispute a CDR
following Make a Remote Procedure Call on behalf of a
Party to another Party on another Platform.

R.08.03.
02

Platform A SHALL use "dispute" as the operation name
for Make a Remote Procedure Call on behalf of a Party to
another Party on another Platform.

R.08.03.
03

Platform A SHALL use POST as the HTTP request verb
when making its request.

R.08.03.
04

Platform A SHALL use a DisputeCdrRequest in the
payload field of the request body for Make a Remote
Procedure Call on behalf of a Party to another Party on
another Platform.

R.08.03.
05

Platform B SHALL include a DisputeCdrResponse object
in the payload field of the OcpiResponse object in the
response body according to Make a Remote Procedure
Call on behalf of a Party to another Party on another
Platform.

8.4. Other CDRs use cases

156

8.4.1. UC: 08.04 - Check CDR price

1 Objective(s) 1. Party X on Platform A confirms that the price given in a CDR or a Session that they
received from Party Y on Platform B is correct according to Tariffs that Party Y previously
announced to Party X.

2 Description When a Party receives a CDR or a Session they will typically want to check if the price that
they are charged for it is correct. This use case explains how to do that.

3 Actors eMSP

4 Flow This use case happens entirely within the eMSP’s systems.

5 Preconditions Party X hosted on Platform A is subscribed to Tariffs of Party Y hosted on Platform B.
Party X is subscribed to Tariff Associations of Party Y.
Party X is subscribed to Sessions and/or CDRs of Party Y.
Party X received a CDR or Session object from Party Y that it wants to check Party Y’s cost
computation for.

6 Postconditions Party X knows what the price of the CDR or the Session should have been according to
Tariff information given to Party X previously by Party Y.

7 Error handling None specified.

8 Remark(s) Note that OCPI does not facilitate checking the physical quantities that the CPO claims to
have delivered. That the CPO measures time and energy accurately can only be
guaranteed by checking that they use properly calibrated measurement equipment and
that the data from such equipment is not altered in transit.

To enable the eMSP to verify these things remotely, one would need a scheme like the
German Eichrecht’s rules for remote transmission of measurements. In absence of
widespread enactment of such rules, the eMSP will have to trust the CPO to comply with
applicable metrology laws and accordingly use decent calibrated meters and not tamper
with the data in transit.

What OCPI can provide, and does provide with this use case, is checking that the price is
calculated correctly given the trusted measurements.

Also OCPI provides the calibration_info_url field in the EVSE data type which allows
eMSPs or their Drivers to check calibration evidence manually.

Table 43. UC: 08.04 Requirements

157

ID Precondition Requirement

R.08.04.
01

Party X SHOULD start checking the cost by finding which
Tariff Association applies to the CDR or Session. To do so,
it selects from all Tariff Associations replicated to it by
Party Y on Platform B, all those that fulfill all of these
conditions:
* The Tariff Association has the pair of evse_uid and
connector_id for the connector that the Session to check
happened on in their connectors property;
* The Tariff Association has a start_date_time that is
earlier than or equal to the start_date_time of the
Session to check;
* The Tariff Association has an audience that matches the
default_profile_type of the Token that the Session was
started with, or that equals REGULAR if that Token has no
default_profile_type set.

Out of all the Tariff Associations yielded by the selection,
it picks the one that has the latest value for
start_date_time. If there are multiple Tariff Associations
that have the same value for start_date_time, it picks the
one it received last out of them.

R.08.04.
02

Party X found no Tariff Association object
matching the criteria listed in R.08.04.01.

Party X SHOULD consider the check failed. Party X MAY
Dispute the CDR with Party Y if Party X is checking a CDR
object.

R.08.04.
03

Party X found a Tariff Association object
matching the criteria listed in R.08.04.01.

Party X SHOULD check if the Tariff Association ID in the
tariff_association_id field of the Session or CDR object
is the same as the ID of the Tariff Association selected
according to R.08.04.01.

R.08.04.
04

Party X found a Tariff Association object
matching the criteria listed in R.08.04.01.

Party X SHOULD check if the Tariff ID in the tariff_id
field of the Session or CDR object is the same as the
value of the tariff_id field in the Tariff Association
selected according to R.08.04.01.

R.08.04.
05

Party X found a matching Tariff Association
object when executing R.08.04.01 and Party X
found that the checks of R.08.04.03 and
R.08.04.04 succeded.

Having established which Tariff Association applies to the
Session or CDR according to R.08.04.01, Party X SHOULD
load the Tariff that has the Party Issued Object ID given
in the tariff_id field of that Tariff Association and that
was replicated to Party X from Party Y and Platform B.

R.08.04.
06

Party X found no Tariff when executing
08.04.05

Party X SHOULD consider the check failed. Party X MAY
Dispute the CDR with Party Y if Party X is checking a CDR
object.

R.08.04.
07

Party X found a Tariff when executing
R.08.04.05

Party X SHOULD check if the currency in the currency
field of the Session or CDR object is the same as that of
the Tariff selected according to R.08.04.03.

158

ID Precondition Requirement

R.08.04.
08

The tariff selected according to R.08.04.05
passes the check of R.08.04.07.

Party X SHOULD compute the cost of the Session or CDR,
according to the Tariff object format descriptions in the
Tariffs and CDRs chapters of this specification. Party X
SHOULD use as inputs to this computation only these
data:
* The Tariff selected at R.08.04.05;
* The facts of the charging Session as given in the
charging_periods, start_date_time and end_date_time
fields of the Session or CDR object from Party Y;
* Whether the object to check the cost for is a credit CDR,
as given in the credit field if it is a CDR object; and
* Whether the object describes a home charging session,
as given in the home_charging_compensation field if the
object is a CDR.

R.08.04.
09

Party X computed a cost according to
R.08.04.08

Party X SHOULD check if the costs with and without taxes
as determined while executing R.08.04.08 match those
given by Party Y in the object’s total_cost field. Party Y
MAY allow for some error margin to allow small
differences in rounding behavior.

R.08.04.
10

The checks done by Party X according to
R.08.04.03, R.08.04.04, R.08.04.07 or R.08.04.09
fail.

Party X SHOULD consider the check failed. Party X MAY
Dispute the CDR with Party Y if Party X is checking a CDR
object.

8.5. Data types

8.5.1. AuthMethod enum

Value Description

AUTH_REQUEST Authorization request has been sent to the eMSP.

COMMAND OCPI commands like Start a Session or Reserve an EVSE at a Location were used to start
the Session, with the Token provided in the command being used as authorization.

WHITELIST Whitelist was used for autorization, no request to the eMSP was performed.

8.5.2. CDR class

The CDR object describes the Charging Session and its costs, and how these costs are derived from the recorded facts
of the Charging Session.

The CDR object is different from the Session object. The Session object is dynamic as it reflects the current state of the
Charging Session while the Charging Session is ongoing. The information is meant to be presented to the Driver while
the Charging Session is ongoing.

The CDR on the other hand can be thought of as sealed, preserving the information valid at the moment in time the
underlying Session was started. This is a requirement of the main use case for CDRs, namely invoicing. If e.g. a street
is renamed the day after a session took place, the driver should be presented with the name valid at the time the

159

Session was started. This guarantees that the CDR will be recognized as correct by the Driver and is not going to be
disputed.

The CDR object shall always contain information like Location, EVSE, Tariff and Token as they were at the start of the
charging session.

ChargingPeriod: A CPO SHALL at least start (and add) a ChargingPeriod every moment/event that has relevance for
the total costs of a CDR. During a charging session, different parameters change all the time, like the amount of
energy used, or the time of day. These changes can result in another Price Component of the Tariff becoming active.
When another Price Component becomes active, the CPO SHALL add a new Charging Period with at least all the
relevant information for the change to the other Price Component. The CPO is allowed to add more in-between
Charging Periods to a CDR though.

Examples of additional Charging Periods that are required to be added because another Price Component is
becoming active:

• When an energy changes in price after 17:00. The CPO has to start a new Charging Period at 17:00. The CPO also
has to list the energy in kWh consumed until 17:00 in the Charging Period that ends at 17:00.

• When the price of a energy is higher when the EV is charging faster than 32A, a new Charging Period has to be
added the moment the charging power goes over 32A. This may be a moment that is calculated by the CPO, as
the Charge Point might not send the information to the CPO, but it can be interpolated by the CPO using the
metering information before and after that moment.

Property Type Card
.

Description

start_date_time DateTime 1 Start timestamp of the charging session, or in-case of a
reservation (before the start of a session) the start of the
reservation.

end_date_time DateTime 1 The timestamp when the session was completed/finished,
charging might have finished before the session ends, for
example: EV is full, but parking cost also has to be paid.

session_id CiString[1..36] ? Unique ID of the Session for which this CDR is sent. Is only
allowed to be omitted when the CPO has not implemented
the Sessions module or this CDR is the result of a
reservation that never became a charging session, thus no
OCPI Session.

cdr_token CdrToken 1 Token used to start this charging session, including all the
relevant information to identify the unique token.

auth_method AuthMethod 1 Method used for authorization. Multiple AuthMethods are
possible during a charging sessions, for example when the
session was started with a reservation: Reserve an EVSE at a
Location: COMMAND. When the driver arrives and starts
charging using a Token that is whitelisted: WHITELIST. The
last method SHALL be used in the CDR.

160

Property Type Card
.

Description

authorization_reference CiAsciiString[1..36] ? Reference to the authorization given by the eMSP. When the
eMSP provided an authorization_reference in either: real-
time authorization, StartSession or ReserveNow, this field
SHALL contain the same value. When different
authorization_reference values have been given by the
eMSP that are relevant to this Session, the last given value
SHALL be used here.

cdr_location CdrLocation 1 Location where the charging session took place, including
only the relevant EVSE and Connector.

meter_id AsciiString[1..255] ? Identification of the Meter inside the Charge Point.

currency CiAsciiString[3] 1 Currency of the CDR in ISO 4217 Code.

tariff_association_id Tariff 1 The ID of the Tariff Association that was used to look up the
Tariff of this CDR. When the session is free, the ID of a Tariff
Association for a Free of Charge tariff is to be given in this
field.

tariff_id Tariff 1 The ID of the Tariff that was used to compute what the
Session of this CDR costs. When the session is free, the ID of
a Free of Charge tariff is to be given in this field.

charging_periods ChargingPeriod + List of Charging Periods that make up this charging session.

signed_data SignedData ? Signed data that belongs to this charging Session.

total_cost Price 1 Total sum of all the costs of this transaction in the specified
currency.

total_fixed_cost Price ? Total sum of all the fixed costs in the specified currency,
except fixed price components of parking and reservation.
The cost not depending on amount of time/energy used etc.
Can contain costs like a start fee.

total_energy decimal 1 Total energy charged, in kWh.

total_energy_cost Price ? Total sum of all the cost of all the energy used, in the
specified currency.

total_time decimal 1 Total duration of the charging session in hours.

total_time_cost Price ? Total sum of all the cost related to duration of charging
during this transaction, in the specified currency.

total_reservation_cost Price ? Total sum of all the cost related to a reservation of a Charge
Point, including fixed price components, in the specified
currency.

remark UnicodeString[1..2
55]

? Optional remark, can be used to provide additional human
readable information to the CDR, for example: reason why a
transaction was stopped.

161

Property Type Card
.

Description

credit boolean ? When set to true, this is a Credit CDR, and the field
credit_reference_id needs to be set as well.

credit_reference_id CiAsciiString[1..39] ? Is required to be set for a Credit CDR. This SHALL contain the
id of the CDR for which this is a Credit CDR.

home_charging_compens
ation

boolean ? When set to true, this CDR is for a charging session using
the home charger of the EV Driver for which the energy cost
needs to be financial compensated to the EV Driver.

last_updated DateTime 1 Timestamp when this CDR was last updated (or created).

NOTE
Having both a credit and a credit_reference_id might seem redundant. But it is seen as an
advantage as a boolean flag used in queries is much faster than simple string comparison of
references.

NOTE
Different authorization_reference values might happen when for example a reservation request had
a different authorization_reference then the value returned by a real-time authorization.

NOTE

When no start_date_time and/or end_date_time is known to the CPO, normally the CPO cannot send
the CDR. If the MSP and CPO both agree that they accept CDRs that miss either or both the
start_date_time and end_date_time, and local legislation allows billing of sessions where
start_date_time and/or end_date_time are missing. Then, and only then, the CPO could send a CDR
where the start_date_time and/or end_date_time are set to: "1970-1-1T00:00:00Z.

8.5.3. CdrConnector class

A reference to the connector that the Session described in the CDR happened on, plus some convenient data about
that connector.

evse_uid CiAsciiStrin
g[1..36]

1 Uniquely identifies the EVSE among all EVSEs of all Locations of the
same Party. Refers to the uid field of the EVSE objects in Locations
issued to the Party receiving the CDR.

evse_id CiAsciiString[
1..48]

1 Compliant with the following specification for EVSE ID from "eMI3
standard version V1.0" (http://emi3group.com/documents-links/) "Part
2: business objects".

connector_id CiAsciiString[
1..36]

1 Identifier of the connector within the EVSE.

connector_standard ConnectorTy
pe

1 The standard of the connector that the Session described by the CDR
happened on.

connector_format ConnectorFo
rmat

1 The format (socket/cable) of the connector that the Session described
by the CDR happened on.

connector_power_ty
pe

PowerType 1 The power type of the connector that the Session described by the CDR
happened on.

162

http://emi3group.com/documents-links/

8.5.4. CdrDimension class

Property Type Card. Description

type CdrDimensio
nType

1 Type of CDR dimension.

volume decimal 1 Volume of the dimension consumed, measured according to the
dimension type.

8.5.5. CdrDimensionType enum

This enumeration contains allowed values for CdrDimensions, which are used to define dimensions of
ChargingPeriods in both CDRs and Sessions. Some of these values are not useful for CDRs, and SHALL therefor only be
used in Sessions, these are marked in the column: Session Only

Value Session
Only

Description

CURRENT Y Average charging current during this ChargingPeriod: defined in A (Ampere).
When negative, the current is flowing from the EV to the grid.

ENERGY Total amount of energy (dis-)charged during this ChargingPeriod: defined in kWh.
When negative, more energy was feed into the grid then charged into the EV.

ENERGY_EXPORT Y Total amount of energy feed back into the grid: defined in kWh.

ENERGY_IMPORT Y Total amount of energy charged, defined in kWh.

MAX_CURRENT Sum of the maximum current over all phases, reached during this
ChargingPeriod: defined in A (Ampere).

MIN_CURRENT Sum of the minimum current over all phases, reached during this
ChargingPeriod, when negative, current has flowed from the EV to the grid.
Defined in A (Ampere).

MAX_POWER Maximum power reached during this ChargingPeriod: defined in kW (Kilowatt).

MIN_POWER Minimum power reached during this ChargingPeriod: defined in kW (Kilowatt),
when negative, the power has flowed from the EV to the grid.

POWER Y Average power during this ChargingPeriod: defined in kW (Kilowatt). When
negative, the power is flowing from the EV to the grid.

RESERVATION_TIME Time during this ChargingPeriod Charge Point has been reserved and not yet
been in use for this customer. Defined in hours.

STATE_OF_CHARGE Y Current state of charge of the EV, in percentage, values allowed: 0 to 100. See
note below.

TIME Time that this ChargingPeriod lasted. Defined in hours.

NOTE

OCPI makes it possible to provide SoC in the Session object. This information can be useful to show
the current State of Charge to an EV driver during charging. Implementers should be aware that SoC
is only available at some DC Chargers. Which is currently a small amount of the total amount of
Charge Points. Of these DC Chargers, only a small percentage currently provides SoC via OCPP to the

163

CPO. Then there is also the question if SoC is allowed to be provided to third-parties as it can be seen
as privacy-sensitive information. So if an implementer wants to show SoC in, for example an App,
care should be taken, to make the App work without SoC, as this will probably not always be
available.

8.5.6. CdrLocation class

The CdrLocation class contains only the relevant information from the Location object that is needed in a CDR.

Property Type Card. Description

id CiAsciiString[
1..36]

1 Party Issued Object identifier of the Location. Uniquely identifies the
Location among all Locations issued by the same Party on the same
Platform. This field can never be changed, modified or renamed.

name UnicodeStrin
g[1..255]

? Display name of the Location.

address Address ? Street address and geographical coordinates of the Loction where the
Session happened. While the field is optional to allow for "privacy by
design" solutions where no address data of a home Charging Station is
ever shared, it must typically be filled in for the usual case of a
transaction on a Charging Station that is open to the general public.
That is, CDR senders should only leave this field unset if they agreed
with the receiver that it is OK to send them CDRs without an address.

connector CdrConnecto
r

? A reference to the connector that the Session happened on. This is
allowed to be unset if and only if this CDR was created for a reservation
that never resulted in a Charging Session.

8.5.7. CdrToken class

Property Type Card. Description

party_id CiAsciiString[
5]

1 ISO 15118 party ID of the Party that issued this Token.

uid CiAsciiString[
1..36]

1 Unique ID by which this Token can be identified.
This is the field used by the CPO’s system (RFID reader on the Charge
Point) to identify this token.
Currently, in most cases: type=RFID, this is the RFID hidden ID as read by
the RFID reader, but that is not a requirement.
If this is a type=APP_USER Token, it will be a unique, by the eMSP,
generated ID.

type TokenType 1 Type of the token

contract_id CiAsciiString[
1..36]

1 Uniquely identifies the EV driver contract token within the eMSP’s
platform (and suboperator platforms). Recommended to follow the
specification for eMA ID from "eMI3 standard version V1.0"
(http://emi3group.com/documents-links/) "Part 2: business objects."

164

http://emi3group.com/documents-links/

Property Type Card. Description

token_version int ? If whitelist authorization was used by the CPO to authorize the Session,
this field MUST be filled with the Party Issued Object version of the
Token that was used by the CPO to authorize the Session.

8.5.8. ChargingPeriod class

A Charging Period consists of a start timestamp and a list of possible values that influence this period, for example:
amount of energy charged this period, maximum current during this period etc.

Property Type Card. Description

start_date_time DateTime 1 Start timestamp of the charging period. A period ends when the next
period starts. The last period ends when the session ends.

dimensions CdrDimensio
n

+ List of relevant values for this charging period.

8.5.9. DisputeCdrRequest class

Property Type Card. Description

cdr_id CiAsciiString[
1..36]

1 The Party Issued Object ID of the CDR that is being disputed.

reason UnicodeStrin
g[1..4000]

1 An explanation of why the CDR is disputed. This can be a human-written
note or automatically generated text from an automated checking
system.

8.5.10. DisputeCdrResponse class

This object type has no fields.

8.5.11. SignedData class

This class contains all the information of the signed data. Which encoding method is used, if needed, the public key
and a list of signed values.

Property Type Card. Description

encoding_method CiAsciiString[
1..36]

1 The name of the encoding used in the SignedData field. This is
the name given to the encoding by a company or group of
companies. See note below.

encoding_method_version int ? Version of the EncodingMethod (when applicable)

public_key AsciiString[1.
.512]

? Public key used to sign the data, base64 encoded.

signed_values SignedValue + One or more signed values.

165

Property Type Card. Description

url AsciiString[1.
.512]

? URL that can be shown to an EV driver. This URL gives the EV
driver the possibility to check the signed data from a charging
session.

NOTE
For the German Eichrecht, different solutions are used, all have (somewhat) different encodings.
Below the table with known implementations and the contact information for more information.

Name Description Contact

OCMF Proposed by SAFE https://has-to-be.com

Alfen Eichrecht Alfen Eichrecht encoding / implementation. https://alfen.com/de/
downloads

EDL40 E-Mobility Extension eBee smart technologies implementation https://www.ebee.berlin

EDL40 Mennekes Mennekes implementation

8.5.12. SignedValue class

This class contains the signed and the plain/unsigned data. By decoding the data, the receiver can check if the content
has not been altered.

Property Type Card. Description

nature CiAsciiString[
1..32]

1 Nature of the value, in other words, the event this value belongs to.
Possible values at moment of writing:
- Start (value at the start of the Session)
- End (signed value at the end of the Session)
- Intermediate (signed values take during the Session, after Start,
before End)
Others might be added later.

plain_data AsciiString[1.
.512]

1 The un-encoded string of data. The format of the content depends on
the EncodingMethod field.

signed_data AsciiString[1.
.5000]

1 Blob of signed data, base64 encoded. The format of the content
depends on the EncodingMethod field.

166

https://has-to-be.com
https://alfen.com/de/downloads
https://alfen.com/de/downloads
https://www.ebee.berlin

9. Tariffs
This chapter describes the Tariffs module.

An OCPI 3.0 module is a set of Functional Use Cases organised around a certain type of data object being replicated
from one party to another. In the Tariff module, the type of data object is the Tariff object. A Tariff object describes
how a cost can be computed for a Session or CDR object.

The main purposes of the Tariffs module are the following:

• It allows CPOs to announce to MSPs how they charge for Charging Sessions on their Locations.

• It allows MSPs, NAPs and NSPs to automatically show tariff information to Drivers in for example smartphone
apps.

• It allows MSPs to validate the cost that CPOs charge them for Charging Sessions.

9.1. Changes from OCPI 2.2.1
• A Tariffs Associations module was split off from Tariffs. After the split, a Tariff only serves to describe a way in

which a cost can be computed for any Session or CDR. A Tariff no longer describes to which Sessions and CDRs it
applies, as OCPI 2.2.1 did using the start date, end date and type fields. Associating Tariffs with Sessions is now
the responsibility of the Tariff Associations module.

• The country_code, party_id and id fields were removed as they were from all Party Issued Objects. These fields
are now given in the Party Issued Object Update object in the request that pushes the Tariff object.

• The step_size field was removed from the PriceComponent object. In OCPI 3.0, CPOs are expected to measure
every quantity with at least the minimum precision required by applicable metrology law and carry this precision
through in further cost computation. See the notes for the decimal type for pointers on how to implement this in
code.

• It is now clear when FLAT Tariff components apply.

• The PARKING_TIME dimension has been removed. Both time spent charging and time spent not charging are now
counted under the dimension TIME, and restrictions on TariffElements have to be used to charge a different price
for time spent charging than for time spent not charging.

9.2. A note on "Parking time", "Loitering fees", "Idle
penalties", et cetera
Many CPOs want to restrict the time that vehicles are occupying EVSEs without charging. This makes sense as
charging stations are an expensive investment, and to make the best use of these charging stations, the CPO or their
stakeholders will want the charging stations to be charging vehicles as much as possible.

To incentivize Drivers to vacate an EVSE quickly after the charging of their vehicle is completed, many CPOs have
begun to charge extra for time that a vehicle is attached to the EVSE but not charging. OCPI 2.2.1 had a specific
dimension PARKING_TIME to facilitate such surcharges for time in a Charge Session spent not charging. We will call
such surcharges loitering fees for the rest of this section, although they are also known as idle fees or parking fees or
other such terms.

In the OCPI 3.0 development process, we noticed several problems with such loitering fees:

167

• It is hard for a CPO to know precisely when energy transfer starts or ends. Especially with OCPP 1.6 and earlier
OCPP versions, there is no reliable way to know when exactly charging ends or begins. Meanwhile, the starting
point, endpoint and total energy consumption of a Charge Session are reliably captured by OCPP 1.6 charging
stations.

• Even if the CPO knows when energy transfer stops, it is not always clear if this cessation of energy transfer is
caused by the vehicle, by the charging station or by other circumstances in the local electrical system. If the cause
is not in the vehicle, the CPO would be imposing surcharges on the Driver that the Driver cannot avoid. This is
intransparent and unfair to the Driver and may also be a compliance risk for the CPO.

• Even if the CPO implements loitering fees correctly, with solutions to the problems above, then a Driver can work
around the CPO’s incentives by programming the car. The Driver can program the car to never let the charging
power drop to zero, for example by making the car charge at full speed until the battery is 75% full and then
making the car charge the last 25% as slow as possible, putting off the loitering fee as long as possible.

• It is unclear if and how a loitering fee would be applied if a vehicle repeatedly stops and resumes charging during
one Session.

For these reasons, the authors of OCPI believe a CPO should think twice before deciding on a loitering fee as the
means for incentivizing Drivers to vacate EVSEs when charging is done. We believe CPOs should also consider other
incentives, like for example:

• Charging a higher rate per hour after a certain duration of the Charging Session, regardless of when charging
ends. This is a less precise tool than a loitering fee, but it is easier to understand for Drivers and easier to enforce
for CPOs.

• Announcing maximum EVSE occupation durations with signage and letting on-site staff enforce this.

• Designing the site layout to encourage quick turnaround. This is how fuel stations seem to get by without
loitering fees nor signs setting maximum occupation durations.

The example Tariffs below frequently give examples of how to set loitering fees with the vehicle_requesting_power
TariffRestriction. This is done because such Tariffs are in common use, not because we as authors believe that such
Tariffs are typically the best choice for CPOs.

9.3. Replicating Tariff objects

9.3.1. UC: 09.01 - Replicate Tariff objects from one Party to another Party

1 Objective(s) 1. Party X on a Platform A obtains and maintains up-to-date copies of the Tariffs used by
Party Y

2 Description Using the use cases of the Party-Issued Objects chapter, Tariff objects are replicated from
Party Y to Party X

3 Actors eMSP, CPO, NAP, NSP

4 Flow 1. Party X subscribes to Party Y’s Tariff objects
2. Party Y pushes all their Tariff objects as of subscription time to Party X
3. Party Y pushes every newly updated Tariff object to Party X as soon as these updates
happen
4. This continues until either party cancels the subscription

168

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Tariffs module to Party X on Platform A.

6 Postconditions Party X has up-to-date information on the Tariff objects of Party Y

7 Error reporting Error reporting happens according to the use cases in the Party-Issued Objects use cases.

8 Remark(s)

Table 44. UC: 09.01 Requirements

ID Precondition Requirement

R.09.01.
01

Platform A SHALL subscribe according to use case
Subscribe to the Party Issued Objects of a certain Module
of a certain Party, using "tariffs" as the ModuleID value.

R.09.01.
02

Platforms A and B MAY also follow use cases Subscribe to
Party Issued Objects of a certain Module of a certain
Party as a Hub, Subscribe to Party Issued Objects of a
certain Module of a Hub or Subscribe to Party Issued
Objects of a certain Module of a Hub as a Hub while
subscribing according to R.09.01.01

R.09.01.
03

Platform B sends a Party Issued Object update
to Party X on Platform A according to use case
Send a full update of a Party Issued Object to a
Subscribed Platform in the context of the
subscription created according to R.09.01.01

Platform B SHOULD set the value of the "payload" field of
the PartyIssuedObjectUpdate object in the request body
to a JSON object that conforms to the Tariff object type.

R.09.01.
04

Tariff objects are immutable. That is, Platform B SHALL
NOT send an update with a changed version number for
a previously received object using use case Send a Full
Update of a Party-Issued Object to a Subscribed Platform
in the context of a subscription to the Tariffs module.

R.09.01.
05

Platform A receives an update with a changed
version number for a previously received
object using use case Send a Full Update of a
Party-Issued Object to a Subscribed Platform

Platform A SHALL respond with an OcpiResponse with no
value for the payload field and with the status_code field
set to 6003.

9.3.2. Examples of Tariff objects

In the following section, a few different pricing strategies will be explained with some Tariff examples. For simplicity,
we will use the euro as the currency in all of the examples if not mentioned otherwise.

9.3.2.1. Simple Tariff example € 0.25 per kWh

• Energy

• € 0.25 per kWh (excl. VAT)

169

• 10% VAT

This tariff will result in costs of € 5.00 (excl. VAT) or € 5.50 (incl. VAT) when 20 kWh are charged.

{
 "currency": "EUR",
 "elements": [{
 "price_components": [{
 "type": "ENERGY",
 "price": 0.25,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }]
 }],
 "last_updated": "2018-12-17T11:16:55Z"
}

9.3.2.2. Simple Tariff example with British Columbia taxes

In some jurisdictions, there is no single national VAT scheme and multiple taxes may apply to the cost of a Charging
Session. This is an example of such a situation in the Canadian province of British Columbia.

• Time

• C$ 1.00 per hour (before taxes)

• 5% GST (Goods and Services Tax imposed by the Canadian federal government)

• 7% PST (Provincial Sales Tax imposed by the province of British Columbia)

This Tariff will results in costs of C$ 2.00 (before taxes) or C$ 2.24 (after taxes) when a Driver is in a Charging Session
for 2 hours.

{
 "currency": "CAD",
 "elements": [{
 "price_components": [{
 "type": "TIME",
 "price": 1.00,
 "taxes": [
 {
 "name": "GST",
 "percentage": 5
 },
 {
 "name": "PST",
 "percentage": 7
 }
]
 }]
 }],
 "last_updated": "2024-02-16T18:42:55Z"
}

170

9.3.2.3. Tariff example € 0.25 per kWh + start fee

• Start or transaction fee

• € 0.50 (excl. VAT)

• 20% VAT

• Energy

• € 0.25 per kWh (excl. VAT)

• 10% VAT

This tariff will result in total cost of € 5.50 (excl. VAT) or € 6.10 (incl. VAT) when 20 kWh are charged.

{
 "currency": "EUR",
 "elements": [{
 "price_components": [{
 "type": "FLAT",
 "price": 0.50,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }, {
 "type": "ENERGY",
 "price": 0.25,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }]
 }],
 "last_updated": "2018-12-17T11:36:01Z"
}

9.3.2.4. Tariff example € 0.25 per kWh + minimum price

• Minimum price

◦ € 0.50 (excl. VAT)

◦ € 0.55 (incl. VAT, which is 10%)

• Energy

• € 0.25 per kWh (excl. VAT)

• 10% VAT

This tariff will result in costs of € 5.00 (excl. VAT) or € 5.50 (incl. VAT) when 20 kWh are charged. But if less than 2 kWh
is charged, € 0.50 (excl. VAT) or € 0.55 (incl. VAT) will be billed.

This is different from a start fee as can be seen when compared to the example above.

{
 "currency": "EUR",

171

 "min_price": {
 "before_taxes": 0.50,
 "taxes": [{
 "name": "VAT",
 "amount": 0.05
 }]
 },
 "elements": [{
 "price_components": [{
 "type": "ENERGY",
 "price": 0.25,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }]
 }],
 "last_updated": "2018-12-17T16:45:21Z"
}

9.3.2.5. Tariff example € 0.25 per kWh + loitering fee + start fee

• Start or transaction fee

• € 0.50 (excl. VAT)

• 20% VAT

• Energy

• € 0.25 per kWh (excl. VAT)

• 10% VAT

• Time occupying the EVSE while not requesting power

• € 2.00 per hour (excl. VAT)

• 20% VAT

For a Charging Session where 20 kWh are charged and the Session keeps going for 40 minutes after the charging was
completed, this tariff will result in costs of € 6.83 (excl. VAT) or € 7.70 (incl. VAT).

{
 "currency": "EUR",
 "elements": [
 {
 "price_components": [{
 "type": "TIME",
 "price": 2.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }],
 "restrictions": {
 "vehicle_requesting_power": false
 }
 },
 {
 "price_components": [{
 "type": "FLAT",

172

 "price": 0.50,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }, {
 "type": "ENERGY",
 "price": 0.25,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }]
 }
],
 "last_updated": "2018-12-17T11:44:10Z"
}

9.3.2.6. Tariff example € 0.25 per kWh + start fee + max price

• Maximum price

• € 10 (excl. VAT)

• € 11 (incl. VAT, which is 10%)

• Start or transaction fee

• € 0.50 (excl. VAT)

• 20% VAT

• Energy

• € 0.25 per kWh (excl. VAT)

• 10% VAT

For a charging session where 50 kWh are charged, this tariff will result in costs of € 10.00 (excl. VAT) or € 11.00 (incl.
VAT) due to the price limit. If only 30 kWh were charged, the costs would be € 8.00 (excl. VAT) and € 8.85 (incl. VAT), as
the start fee combined with the energy costs would be lower than the defined max price.

{
 "currency": "EUR",
 "max_price": {
 "before_taxes": 10.00,
 "taxes": [{
 "name": "VAT",
 "amount": 1.00
 }]
 },
 "elements": [{
 "price_components": [{
 "type": "FLAT",
 "price": 0.50,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }, {

173

 "type": "ENERGY",
 "price": 0.25,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }]
 }],
 "last_updated": "2018-12-17T17:15:01Z"
}

9.3.2.7. Simple Tariff example € 2 per hour

An example of a tariff where the driver does not pay per kWh, but for the time of using the EVSE.

• Charging Time

• € 2.00 per hour (excl. VAT)

• 10% VAT

For a Session that lasts 2.5 hours, this tariff will result in costs of € 5.00 (excl. VAT) or € 5.50 (incl. VAT).

Note that the Session lasts the whole time that the vehicle is known to the CPO to be occupying the EVSE, so with this
Tariff, what the Driver pays is not dependent on how much time of those 2.5 hours they spend charging or not
charging.

{
 "currency": "EUR",
 "elements": [{
 "price_components": [{
 "type": "TIME",
 "price": 2.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }]
 }],
 "last_updated": "2015-06-29T20:39:09Z"
}

9.3.2.8. Simple Tariff example € 3 per hour, € 5 per hour loitering

Example of a tariff where the driver pays for the time of using the EVSE, but pays more when the car is no longer
charging, to discourage the Driver from leaving their vehicle connected when it is already full.

• Time (when not drawing power)

• € 5.00 per hour (excl. VAT)

• 20% VAT

• Time (otherwise)

• € 3.00 per hour (excl. VAT)

174

• 10% VAT

A charging session of 2.5 hours of charging, where the vehicle is occupying the EVSE for 42 more minutes after
charging ended, results in a total session time of 150 minutes (charging) + 42 minutes (not charging). This session
with this tariff will result in total cost of € 11.00 (excl. VAT) or € 12.45 (incl. VAT).

{
 "currency": "EUR",
 "elements": [{
 "price_components": [{
 "type": "TIME",
 "price": 5.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }],
 "restrictions": {
 "vehicle_requesting_power": false
 }
 }, {
 "price_components": [{
 "type": "TIME",
 "price": 3.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }]
 }],
 "last_updated": "2018-12-17T17:00:43Z"
}

9.3.2.9. Simple Tariff example with multiple languages

• Time

• € 1.90 per hour (excl. VAT)

• 5.2% VAT

For a Session of 2.5 hours, this tariff will result in costs of € 4.75 (excl. VAT) or € 5.00 (incl. VAT).

{
 "currency": "EUR",
 "tariff_alt_text": [{
 "language": "en",
 "text": "€ 2.00 per hour including VAT"
 }, {
 "language": "nl",
 "text": "€ 2,00 per uur inclusief BTW"
 }],
 "elements": [{
 "price_components": [{
 "type": "TIME",
 "price": 1.90,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 5.2

175

 }
]
 }]
 }],
 "last_updated": "2015-06-29T20:39:09Z"
}

9.3.2.10. Tariff example not possible with OCPI: differentiation by payment method

For this example, the credit card start tariff is € 0.50, but when using a debit card it is only € 0.25.

Such a tariff cannot be modeled with OCPI.
But by modeling it as € 0.50 start tariff where debit card users are given a discount in the final CDR of € 0.25, the CPO
can achieve a situation where most likely nobody will complain. The tariff_alt_text explains this clearly.

{
 "currency": "EUR",
 "tariff_alt_text": [{
 "language": "en",
 "text": "€ 2.00 per hour, plus a flat fee of € 0.25 for debit cards or € 0.50 for credit cards. These prices
include VAT."
 }, {
 "language": "nl",
 "text": "€ 2,00 euro per uur, plus een starttarief van € 0,25 met bankpas of € 0,50 euro met creditcard. Deze
prijzen zijn inclusief BTW."
 }],
 "elements": [{
 "price_components": [{
 "type": "FLAT",
 "price": 0.40,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 25
 }
]
 }, {
 "type": "TIME",
 "price": 1.90,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 5.2
 }
]
 }]
 }],
 "last_updated": "2018-12-29T15:55:58Z"
}

9.3.2.11. Simple Tariff example with alternative URL

This examples shows the use of tariff_alt_url.

This shows a tariff where the price might not be fixed, but depend on the real-time energy prices. To explain this to
the driver, a short text inside tariff_alt_text might not be the best solution. Showing a graph could be better.
Therefore it is also possible to provide an URL in tariff_alt_url to a site that explains the tariff better and in more
detail.

NOTE While it is possible in OCPI to refer to a URL for pricing, consumer law may place restrictions on the

176

variability of tariffs and the indirections that Drivers have to go through to learn about these tariffs.
In general, it is intransparent to consumers to Drivers to report one tariff via OCPI but also use a URL
or alt text to override the information in the Tariff object. Use such an approach with caution.

• Start or transaction fee

• € 0.50 (excl. VAT)

• 20% VAT

• Energy

• € 0.25 per kWh (excl. VAT)

• 10% VAT

For a charging session where 20.45 kWh are charged: this tariff will result in:

• Start fee: € 0.50 (excl. VAT), € 0.60 (incl. VAT)

• Energy costs: € 5.11 (excl. VAT), € 5.62 (incl. VAT)

• Total: € 5.61 (excl. VAT), € 6.22 (incl. VAT)

if the announced prices were billed.

The twist here is that this tariff makes use of tariff_alt_url which links to a page with real-time energy prices of the
operator, where is shown that the actual price per kWh is different. With an assumed current energy price of € 0.22
per kWh (excl. VAT), which is shown or explained on the page linked by tariff_alt_url, the resulting costs:

• Start fee: € 0.50 (excl. VAT), € 0.60 (incl. VAT)

• Energy costs: € 4.50 (excl. VAT), € 4.95 (incl. VAT)

• Total: € 5.00 (excl. VAT), € 5.55 (incl. VAT)

A breakdown for computing the price as the elements field of the Tariff says, with an energy price of € 0.25 / kWh, is as
follows:

Dimension Quantity Price ex VAT Cost ex
VAT

VAT Cost inc
VAT

Flat 1 0.50 0.50 20% 0.60

Energy 20.45 kWh 0.25 per kWh € 5.11 10% 5.62

Total 5.61 6.22

{
 "currency": "EUR",
 "tariff_alt_url": "https://company.com/tariffs/13",
 "elements": [{
 "price_components": [{
 "type": "FLAT",
 "price": 0.50,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]

177

 }, {
 "type": "ENERGY",
 "price": 0.25,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }]
 }],
 "last_updated": "2015-06-29T20:39:09Z"
}

9.3.2.12. Complex Tariff example

• Start or transaction fee

• € 2.50 (excl. VAT)

• 15% VAT

• Time

◦ When the vehicle is not requesting power, on weekdays between 09:00 and 18:00

• € 5 per hour (excl. VAT)

• 10% VAT

◦ When the vehicle is not requesting power, on Saturday between 10:00 and 17:00

• € 6 per hour (excl. VAT)

• 10% VAT

◦ When charging with less than 32A

• € 1.00 per hour (excl. VAT)

• 20% VAT

◦ When charging with more than 32A on weekdays

• € 2.00 per hour (excl. VAT)

• 20% VAT

◦ When charging with more than 32A on weekends

• € 1.25 per hour (excl. VAT)

• 20% VAT

For a charging session on a Monday morning starting at 09:30 where the charging takes 2:45 hours (165 minutes),
and where the driver uses a maximum of 16A of current and is not requesting power for additional 42 minutes
afterwards, this tariff will result in costs of € 8.75 (excl. VAT) or € 10.03 (incl. VAT) for a total session time of 165
minutes (charging) + 42 minutes (not charging).

A breakdown is as follows:

Dimension Quantity Price ex VAT Cost ex
VAT

VAT Cost inc
VAT

Flat 1 2.50 2.50 15% 2.875

178

Dimension Quantity Price ex VAT Cost ex
VAT

VAT Cost inc
VAT

Time drawing power 165 minutes 1.00 per hour 2.75 20% 3.30

Time not drawing power 42 minutes 5.00 per hour 3.50 10% 3.85

Total 8.75 10.03

For a charging session on a Saturday afternoon starting at 13:30 which takes 1:54 hours (114 minutes), where the
driver uses a minimum of 43A of current (all the time, which is only theoretically possible) and is loitering for
additional 71 minutes afterwards, this tariff will result in a total cost of € 11.88 (excl. VAT) or € 13.42 (incl. VAT). A
breakdown is as follows:

Dimension Quantity Price ex VAT Cost ex
VAT

VAT Cost inc
VAT

Flat 1 2.50 2.50 15% 2.875

Time drawing power 114 minutes 1.25 per hour 2.28 20% 2.736

Time not drawing power 71 minutes 6.00 per hour 7.10 10% 7.81

Total 11.88 13.421

{
 "currency": "EUR",
 "tariff_alt_url": "https://company.com/tariffs/14",
 "elements": [
 {
 "price_components": [{
 "type": "FLAT",
 "price": 2.50,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 15
 }
]
 }]
 }, {
 "price_components": [{
 "type": "TIME",
 "price": 5.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }],
 "restrictions": {
 "start_time": "09:00",
 "end_time": "18:00",
 "day_of_week": ["MONDAY", "TUESDAY", "WEDNESDAY", "THURSDAY", "FRIDAY"],
 "vehicle_requesting_power": false
 }
 }, {
 "price_components": [{
 "type": "TIME",
 "price": 6.00,
 "taxes": [
 {

179

 "name": "VAT",
 "percentage": 10
 }
]
 }],
 "restrictions": {
 "start_time": "10:00",
 "end_time": "17:00",
 "day_of_week": ["SATURDAY"],
 "vehicle_requesting_power": false
 }
 }, {
 "price_components": [{
 "type": "TIME",
 "price": 1.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }],
 "restrictions": {
 "max_current": 32.00
 }
 }, {
 "price_components": [{
 "type": "TIME",
 "price": 2.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }],
 "restrictions": {
 "min_current": 32.00,
 "day_of_week": ["MONDAY", "TUESDAY", "WEDNESDAY", "THURSDAY", "FRIDAY"]
 }
 }, {
 "price_components": [{
 "type": "TIME",
 "price": 1.25,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }],
 "restrictions": {
 "min_current": 32.00,
 "day_of_week": ["SATURDAY", "SUNDAY"]
 }
 }
],
 "last_updated": "2015-06-29T20:39:09Z"
}

9.3.2.13. Free of Charge Tariff example

In this example no VAT is given because it is not necessary (as the price is 0.00). This might not always be the case
though and it is of course permitted to add a VAT, even if the price is set to zero.

{

180

 "currency": "EUR",
 "elements": [{
 "price_components": [{
 "type": "FLAT",
 "price": 0.00
 }]
 }],
 "last_updated": "2015-06-29T20:39:09Z"
}

9.3.2.14. First hour free energy example

In this example, we have the following scenario:

• The first hour of loitering time is free.

• From the second to the fourth hour, loitering costs € 2.00 per hour

• From the fourth hour on, loitering costs € 3.00 per hour.

• The first kWh of energy is free, every additional kWh costs € 0.20.

Translated into our tariff schema, the pricing model looks like this:

• Energy

• First kWh: free

• Any additional energy

• € 0.20 per kWh (excl. VAT)

• Time

• When vehicle is requesting power: free

• First hour of not requesting power: free

• Second to fourth hours of not requesting power

• € 2.00 per hour (excl. VAT)

• Any more time than four hours in the Charge Session not requesting power

• € 3.00 per hour (excl. VAT)

For a charging session where the driver charges 20 kWh and where the vehicle is loitering for 2:45 more hours after
charging ended, this tariff will result in costs of € 7.30 (excl. VAT).

A breakdown is as follows:

Dimension Quantity Price ex VAT Cost ex VAT

Energy 1 kWh 0.00 per kWh 0.00

Energy 19 kWh 0.20 per kWh 3.80

Time not drawing power 60 minutes 0.00 per hour 0.00

Time not drawing power 105 minutes 2.00 per hour 3.50

Total 7.30

181

As no VAT information is given, it is not possible to calculate total costs including VAT.

Notice how in this Tariff, the order of TariffElements is used to make the switch to the higher rate for a longer time of
not charging happen. The higher rate is given first in the array of TariffElements, so it has a higher priority. As long as
the 3 hours of not drawing power have not elapsed, the restrictions for the first TariffElement in the list are not
fulfilled, and so the second is tried. If 1 hour of not drawing power has not yet elapsed, the restrictions of the second
TariffElement are not fulfilled either and no PriceComponent to charge for TIME is found at all. As a result TIME is free
if the vehicle has not been loitering for an hour yet. If the vehicle has been loitering for at least an hour but not yet for
three hours, the second TariffElement in the list is the first whose restrictions are fulfilled, and the rate for the TIME
dimension from that element is used.

{
 "currency": "EUR",
 "elements": [
 {
 "price_components": [{
 "type": "TIME",
 "price": 3.0
 }],
 "restrictions": {
 "min_restrictions_duration": 10800,
 "vehicle_drawing_power": false
 }
 }, {
 "price_components": [{
 "type": "TIME",
 "price": 2.0
 }],
 "restrictions": {
 "min_restrictions_duration": 3600,
 "vehicle_drawing_power": false
 }
 }, {
 "price_components": [{
 "type": "ENERGY",
 "price": 0.0
 }],
 "restrictions": {
 "max_energy": 1.0
 }
 }, {
 "price_components": [{
 "type": "ENERGY",
 "price": 0.2
 }],
 "restrictions": {
 "min_energy": 1.0
 }
 }
],
 "last_updated": "2018-12-29T15:55:58Z"
}

9.3.2.15. Tariff example with reservation price

• Reservation

• € 5.00 per hour (excl. VAT)

• 20% VAT

• Start or transaction fee

182

• € 0.50 (excl. VAT)

• 20% VAT

• Energy

• € 0.25 per kWh (excl. VAT)

• 10% VAT

For a charging session that was started 15 minutes after the reservation time, where the driver charges 20 kWh, this
tariff will result in costs of € 6.75 (excl. VAT) or € 7.60 (incl. VAT).

A breakdown is as follows:

Dimension Quantity Price ex VAT Cost ex
VAT

VAT Cost inc
VAT

Flat 1 0.50 0.50 20% 0.60

Energy 20 kWh 0.25 per kWh 5.00 10% 5.50

Reservation 15 minutes 5.00 per hour 1.25 20% 1.50

Total 6.75 7.60

{
 "currency": "EUR",
 "elements": [{
 "price_components": [{
 "type": "TIME",
 "price": 5.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }],
 "restrictions": {
 "reservation": "RESERVATION"
 }
 }, {
 "price_components": [{
 "type": "FLAT",
 "price": 0.50,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }, {
 "type": "ENERGY",
 "price": 0.25,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }]
 }],
 "last_updated": "2019-02-03T17:00:11Z"

183

}

9.3.2.16. Tariff example with reservation price and fee

• Reservation

• € 2.00 reservation fee (excl. VAT)

• € 5.00 per hour (excl. VAT)

• 20% VAT

• Start or transaction fee

• € 0.50 (excl. VAT)

• 20% VAT

• Energy

• € 0.25 per kWh (excl. VAT)

• 10% VAT

For a charging session that was started 13 minutes after the reservation time, where the driver charges 20 kWh, this
tariff will result in costs of € 8.59 (excl. VAT) or € 9.80 (incl. VAT).

A breakdown is as follows:

Dimension Quantity Price ex VAT Cost ex
VAT

VAT Cost inc
VAT

Flat 1 2.00 2.00 20% 2.40

Time not drawing power 13 minutes 5.00 per hour 1.0833 20% 1.30

Flat 1 0.50 0.50 20% 0.60

Energy 20 kWh 0.25 per kWh 5.00 10% 5.50

Total 8.5833 9.80

{
 "currency": "EUR",
 "elements": [{
 "price_components": [{
 "type": "FLAT",
 "price": 2.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }, {
 "type": "TIME",
 "price": 5.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]

184

 }],
 "restrictions": {
 "reservation": "RESERVATION"
 }
 }, {
 "price_components": [{
 "type": "FLAT",
 "price": 0.50,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }, {
 "type": "ENERGY",
 "price": 0.25,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }]
 }],
 "last_updated": "2019-02-03T17:00:11Z"
}

9.3.2.17. Tariff example with reservation price and expire fee

• Reservation

• € 4.00 reservation expiration fee (excl. VAT) (billed when a reservation expires and is not followed by a charging
session)

• € 2.00 per hour (excl. VAT)

• 20% VAT

• Start or transaction fee

• € 0.50 (excl. VAT)

• 20% VAT

• Energy

• € 0.25 per kWh (excl. VAT)

• 10% VAT

This example is very similar to Tariff example with reservation price with the difference that expired reservations cost
something and that the price for reservation is different.

For a charging session that was started 22 minutes after the reservation time, where the driver charges 20 kWh, this
tariff will result in costs of € 6.23 (excl. VAT) or € 6.98 (incl. VAT).

A breakdown of this scenario is as follows:

Dimension Quantity Price ex VAT Cost ex
VAT

VAT Cost inc
VAT

Time 22 minutes 2.00 per hour 0.7333 20% 0.88

185

Dimension Quantity Price ex VAT Cost ex
VAT

VAT Cost inc
VAT

Flat 1 0.50 0.50 20% 0.60

Energy 20 kWh 0.25 per kWh 5.00 10% 5.50

Total 6.23 6.98

If the driver did not start a charging session and the reservation expired after the reserved time of 1 hour, the tariff
would have resulted in costs of € 6.50 (excl. VAT) or € 7.80 (incl. VAT). In case a reservation is not used, the driver has
to pay the full amount of reserved time as well as an additional expiration fee as compensation for not charging at all.

A breakdown of this scenario is as follows:

Dimension Quantity Price ex VAT Cost ex
VAT

VAT Cost inc
VAT

Flat 1 4.00 4.00 20% 4.80

Flat 1 0.50 0.50 20% 0.60

Time 60 minutes 2.00 per hour 2.00 20% 2.40

Total 6.50 7.80

{
 "currency": "EUR",
 "elements": [{
 "price_components": [{
 "type": "FLAT",
 "price": 4.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }],
 "restrictions": {
 "reservation": "RESERVATION_EXPIRES"
 }
 }, {
 "price_components": [{
 "type": "TIME",
 "price": 2.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }],
 "restrictions": {
 "reservation": "RESERVATION"
 }
 }, {
 "price_components": [{
 "type": "FLAT",
 "price": 0.50,
 "taxes": [
 {
 "name": "VAT",

186

 "percentage": 20
 }
]
 }, {
 "type": "ENERGY",
 "price": 0.25,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }]
 }],
 "last_updated": "2019-02-03T17:00:11Z"
}

9.3.2.18. Tariff example with reservation time and expire time

• Reservation

• € 3.00 per hour (excl. VAT)

• € 6.00 per hour (excl. VAT) (billed when a reservation expires and is not followed by a charging session)

• 20% VAT

• Start or transaction fee

• € 0.50 (excl. VAT)

• 20% VAT

• Energy

• € 0.25 per kWh (excl. VAT)

• 10% VAT

This example is very similar to Tariff example with reservation price with the difference that expired reservations cost
something and that the price for reservation is different.

For a charging session that was started 22 minutes after the reservation time, where the driver charges 20 kWh, this
tariff will result in costs of € 6.60 (excl. VAT) or € 7.42 (incl. VAT).

A breakdown of this scenario is as follows:

Dimension Quantity Price ex VAT Cost ex
VAT

VAT Cost inc
VAT

Time 22 minutes 3.00 per hour 1.10 20% 1.32

Flat 1 0.50 0.50 20% 0.60

Energy 20 kWh 0.25 per kWh 5.00 10% 5.50

Total 6.60 7.42

If the driver did not start a charging session and the reservation expired after the reserved time of 1.5 hours, the tariff
would have resulted in costs of € 9.50 (excl. VAT) or € 11.40 (incl. VAT). In case a reservation is not used, the driver has
to pay the expiration fee as compensation for not charging at all.

187

A breakdown of this scenario is as follows:

Dimension Quantity Price ex VAT Cost ex
VAT

VAT Cost inc
VAT

Time 90 minutes 6.00 per hour 9.00 20% 10.80

Flat 1 0.50 0.50 20% 0.60

Total 9.50 11.40

{
 "currency": "EUR",
 "elements": [{
 "price_components": [{
 "type": "TIME",
 "price": 6.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }],
 "restrictions": {
 "reservation": "RESERVATION_EXPIRES"
 }
 }, {
 "price_components": [{
 "type": "TIME",
 "price": 3.00,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }],
 "restrictions": {
 "reservation": "RESERVATION"
 }
 }, {
 "price_components": [{
 "type": "FLAT",
 "price": 0.50,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 20
 }
]
 }, {
 "type": "ENERGY",
 "price": 0.25,
 "taxes": [
 {
 "name": "VAT",
 "percentage": 10
 }
]
 }]
 }],
 "last_updated": "2019-02-03T17:00:11Z"
}

188

9.4. Remote Procedure Calls on Tariff objects
The Tariffs module does not define any Remote Procedure Calls on Tariff objects.

9.5. Object type definitions

9.5.1. DayOfWeek enum

Value Description

MONDAY Monday

TUESDAY Tuesday

WEDNESDAY Wednesday

THURSDAY Thursday

FRIDAY Friday

SATURDAY Saturday

SUNDAY Sunday

9.5.2. Price class

Property Type Card. Description

before_taxes decimal 1 Price/Cost excluding taxes.

taxes TaxAmount * All taxes that are applicable to this price and relevant to the receiver of
the Session or CDR.

9.5.3. PriceComponent class

A Price Component describes how a certain amount of a certain dimension being consumed translates into an
amount of money owed.

Property Type Car
d.

Description

type TariffDimensionType 1 The dimension that is being priced

price decimal 1 Price per unit (before taxes) for this dimension.

taxes TaxPercentage * Applicable taxes for this tariff dimension. If omitted, no taxes
applicable. Not providing any taxes may is different from 0%
VAT, which would be a value of a single tax percentage with
name "VAT" and percentage 0 here.

9.5.4. ReservationRestrictionType enum

189

Value Description

RESERVATION Used in Tariff Elements to describe costs for a reservation.

RESERVATION_EXPIRES Used in Tariff Elements to describe costs for a reservation that expires (i.e. driver does
not start a charging session before expiry_date of the reservation).

NOTE
When a Tariff has both RESERVATION and RESERVATION_EXPIRES Tariff Elements, where both Tariff
Elements have a TIME Price Component, then the time based cost of an expired reservation will be
calculated based on the RESERVATION_EXPIRES Tariff Element.

9.5.5. Tariff class

A Tariff object consists of a list of one or more Tariff Elements, which in turn consist of Price Components.

A Tariff Element is a group of Price Components that apply under the same conditions. The rules for the conditions
under which a Tariff Element applies are known as its "restrictions".

A Price Component describes how the usage of a particular dimension (time or energy) is mapped to an amount of
money owed.

This system of Tariffs, Tariff Elements and Price Components can be used to create complex Tariff structures.

When the list of Tariff Elements contains more than one Element that has a Price Component for a certain dimension,
then the first Tariff Element with a Price Component for that dimension in the list with matching Tariff Restrictions will
be used. Only one Price Component per dimension can be active at any point in time, but multiple Price Components
for different dimensions can be active at once. That is, you can have an ENERGY component and a TIME component
active at the same time, but only those ones that are in the first Tariff Element that has a Price Component for that
dimension and that has restrictions that match at that time.

When no Tariff Element with a specific Dimension is found for which the Restrictions match, and there is no Tariff
Element in the list with the given Dimension without Restrictions, there will be no costs for that Tariff Dimension.

It is advised to always add a "default" Price Component per dimension.

This can be achieved by adding a Tariff Element without restrictions after all other occurrences of the same dimension
in the list of Tariff Elements.

Such a Tariff Element will act as fallback when there is no other Tariff Element that has matching restrictions and that
contains a Price Component for that dimension.

Besides TIME and ENERGY, there is a third possible value for the dimension enumeration, FLAT. The FLAT dimension is
used to represent one-time "flat" fee components in Session pricing. FLAT is different from the other two in that it is
not a quantity that is consumed during the session, but a dimension that always has the value 1 for every Session. As
such there are some special rules for Price Components with the FLAT dimension:

• When, for the first time during the Charging Session, a Price Component with a FLAT dimension that is in a Tariff
Element without a value for the reservation field in its restrictions becomes active, the price of this Price
Component is added to the Session cost;

• When, for the first time during the Charging Session, a Price Component with a FLAT dimension that is in a Tariff
Element with RESERVATION_EXPIRES as the value for the reservation field in its restrictions becomes active, the
price of this Price Component is added to the Session cost; and

190

• When, for the first time during the Charging Session, a Price Component with a FLAT dimension that is in a Tariff
Element with RESERVATION as the value for the reservation field in its restrictions becomes active, the price of this
Price Component is added to the Session cost.

In all other cases, the price of Price Components with a FLAT dimension is ignored.

NOTE

The rule about charging only for the first FLAT fee that becomes active can have unintuitive
consequences. When a Tariff contains elements for a flat price component with a restriction of
"max_energy": 1.0 and another one with a restriction of "min_energy": 1.0, then the flat fee from the
first component will be applied for every Charging Session, even for Charging Sessions in which
more than 1 kWh is charged. The reason is that at the beginning of the Session, less than 1 kWh was
charged, and therefore the first component was active, and therefore it is the first price component
without a reservation restriction to become active, and therefore it is applied. The later price
component is not the first to become active and therefore not applied.

NOTE

Reviewers of this draft specification will notice that this system of dealing with flat fees is probably
more complicated than it has to be. Pieter Goetschalkx of Optimile made a Proposal on Github of a
more straightforward way to represent Tariffs with flat fees. This proposal requires a considerable
overhaul of the description of Tariffs and will make it harder for Platforms to represent the same
Tariff in both OCPI 2.2.1 and 3.0 forms. The proposal is not included in this draft but we are
welcoming input about how reviewers see the trade-off between ease of migration and overall
simplicity here.

To define a "Free of Charge" tariff in OCPI, a Tariff containing one Tariff Element with no restrictions containing one
Price Component with type = FLAT and price = 0.00 has to be provided.

See: Free of Charge Tariff example

Property Type Card. Description

currency CiAsciiString[
3]

1 ISO-4217 code of the currency of this tariff.

tariff_alt_text DisplayText * List of multi-language alternative tariff info texts.

tariff_alt_url URL ? URL to a web page that contains an explanation of the tariff information
in human readable form.

min_price Price ? When this field is set, a Charging Session with this tariff will at least cost
this amount. This is different from a FLAT fee (Start Tariff, Transaction
Fee), as a FLAT fee is a fixed amount that has to be paid for any
Charging Session. A minimum price indicates that when a Charging
Session is calculated to cost less than than this amount according to the
elements field, the cost of the Session will be equal to this amount. (Also
see note below)

max_price Price ? When this field is set, a Charging Session with this tariff will NOT cost
more than this amount. (See note below)

elements TariffElemen
t

+ List of Tariff Elements.

energy_mix EnergyMix ? Details on the energy supplied with this tariff.

191

https://github.com/ocpi/ocpi-3/issues/169#issuecomment-1781798649

Property Type Card. Description

last_updated DateTime 1 Timestamp when this Tariff was first issued.

NOTE

min_price: As the taxes on a Charging Session might be different for different parts of the Session,
there might be situations where the minimum cost of a certain tax is reached earlier or later than
the minimum price before taxes. So as a rule, they all apply: - The total cost of a Charging Session
before taxes can never be lower than the min_price before taxes. - The total amount due for a
particular tax for the Charging Session can never be lower than the amount for that tax in the
min_price.

NOTE

max_price: As the taxes on a Charging Session might be different for different parts of the Session,
there might be situations where the maximum cost of a certain tax is reached earlier or later than
the maximum price before taxes. So as a rule, they all apply: - The total cost of a Charging Session
before taxes can never be higher than the max_price before taxes. - The total amount due for a
particular tax for the Charging Session can never be higher than the amount for that tax in the
max_price.

NOTE

The fields: tariff_alt_text and tariff_alt_url may be used separately, or in combination with each
other or even combined with the structured list of Tariff Elements. When a Tariff contains a
tariff_alt_text field, the tariff_alt_text SHALL only contain additional tariff information in human-
readable text, not the price information that is also available via the elements field. The reason for
this is that the eMSP might have additional fees they want to include in communication with their
customer.

NOTE

There are no parameters related to price rounding in the Tariff object or any of it constituent
objects. Nor does the specification text of this module give any requirements about how to do price
rounding. The reason for this is that price rounding has to be done according to rules and
restrictions set by applicable laws, contracts between the parties using OCPI and the currency used.
The OCPI specification stays out of these matters.

9.5.6. TariffElement class

A Tariff Element is a group of Price Components that share a set of restrictions under which they apply.

That the Price Components share the same restrictions does not mean that at any time, they either all apply or all do
not apply. The reason is that applicable Price Components are looked up separately for each dimension, as described
under the Tariff object. Therefore it is possible that a Price Component for one dimension is found in a Tariff Element
that occurs earlier in the list of Tariff Elements than for another dimension.

Property Type Car
d.

Description

price_component
s

PriceComponent + List of Price Components that each describe how a certain
dimension is priced.

restrictions TariffRestrictions ? Restrictions that describe under which circumstances the Price
Components of this Tariff Element apply.

192

9.5.7. TariffDimensionType enum

Value Description

ENERGY Defined in kWh.

FLAT A flat fee charged for the Session.

TIME Defined in hours.

NOTE

Although OCPI defines that the prices for quantities be given in the units listed in the table above in
OCPI messages, Parties may convert to other units for display to certain audiences. For example, a
CPO may charge a loitering fee of € 0.50 per minute for occupying a DC fast charger without
charging. The CPO and eMSPs' Driver apps may show this as € 0.50 per minute even when it has to
be transferred in OCPI as € 30 per hour.

9.5.8. TariffRestrictions class

A TariffRestrictions object describes if and when a Tariff Element becomes active or inactive during a Charging
Session.

These restrictions are not to be interpreted as making the Tariff Element applicable or not applicable for the entire
Charging Session.

When more than one restriction is set, they are to be treated as a logical AND. So a Tariff Element is active if and only
if all of the properties in its TariffRestrictions match.

Property Type Card. Description

start_time CiAsciiString[
5]

? Start time of day in local time, the time zone is defined in the time_zone
field of the Location, for example 13:30, valid from this time of the day.
Must be in 24h format with leading zeros. Hour/Minute separator: ":"
Regex: ([0-1][0-9]|2[0-3]):[0-5][0-9]

end_time CiAsciiString[
5]

? End time of day in local time, the time zone is defined in the time_zone
field of the Location, for example 19:45, valid until this time of the day.
Same syntax as start_time. If end_time < start_time then the period
wraps around to the next day. To stop at end of the day use: 00:00.

min_energy decimal ? Minimum consumed energy in kWh, for example 20, valid from this
amount of energy (inclusive) being used.

max_energy decimal ? Maximum consumed energy in kWh, for example 50, valid until this
amount of energy (exclusive) being used.

193

Property Type Card. Description

min_current decimal ? Sum of the minimum current (in Amperes) over all phases, for example
5. When the EV is charging with more than, or equal to, the defined
amount of current, this TariffElement is/becomes active. If the charging
current is or becomes lower, this TariffElement is not or no longer valid
and becomes inactive. This describes NOT the minimum current over
the entire Charging Session. This restriction can make a TariffElement
become active when the charging current is above the defined value,
but the TariffElement MUST no longer be active when the charging
current drops below the defined value.

max_current decimal ? Sum of the maximum current (in Amperes) over all phases, for example
20. When the EV is charging with less than the defined amount of
current, this TariffElement becomes/is active. If the charging current is
or becomes higher, this TariffElement is not or no longer valid and
becomes inactive. This describes NOT the maximum current over the
entire Charging Session. This restriction can make a TariffElement
become active when the charging current is below this value, but the
TariffElement MUST no longer be active when the charging current
raises above the defined value.

min_power decimal ? Minimum power in kW, for example 5. When the EV is charging with
more than, or equal to, the defined amount of power, this TariffElement
is/becomes active. If the charging power is or becomes lower, this
TariffElement is not or no longer valid and becomes inactive. This
describes NOT the minimum power over the entire Charging Session.
This restriction can make a TariffElement become active when the
charging power is above this value, but the TariffElement MUST no
longer be active when the charging power drops below the defined
value.

max_power decimal ? Maximum power in kW, for example 20. When the EV is charging with
less than the defined amount of power, this TariffElement becomes/is
active. If the charging power is or becomes higher, this TariffElement is
not or no longer valid and becomes inactive. This describes NOT the
maximum power over the entire Charging Session. This restriction can
make a TariffElement become active when the charging power is below
this value, but the TariffElement MUST no longer be active when the
charging power raises above the defined value.

min_duration integer ? Minimum duration in seconds the Charging Session MUST last
(inclusive). When the duration of a Charging Session is longer than the
defined value, this TariffElement is or becomes active. Before that
moment, this TariffElement is not yet active.

max_duration integer ? Maximum duration in seconds the Charging Session MUST last
(exclusive). When the duration of a Charging Session is shorter than the
defined value, this TariffElement is or becomes active. After that
moment, this TariffElement is no longer active.

194

Property Type Card. Description

min_restrictions_du
ration

integer ? Minimum duration in seconds that the other restrictions for this
TariffElement must have been fulfilled. When the other restrictions of
the TariffElement have been fulfilled for this many seconds, this
TariffElement becomes active.

day_of_week DayOfWeek * Which day(s) of the week this TariffElement is active.

reservation Reservation
RestrictionTy
pe

? When this field is present, the TariffElement describes reservation costs.
A reservation starts when the reservation is made, and ends when the
driver starts charging on the reserved EVSE/Location, or when the
reservation expires. A reservation can only have: FLAT and TIME
TariffDimensions, where TIME is for the duration of the reservation.

vehicle_requesting_
power

boolean ? Restricts the applicability of the PriceComponent to situations where
the vehicle is requesting power from the EVSE, or to situations where
the vehicle is not requesting power.
Note that the difference between "vehicle_requesting_power": false
and something like "max_power": 0.01 is that the former only applies
when the vehicle itself indicates towards the EVSE that it will not take
more energy. "max_power": 0.01 would also apply when the EVSE is not
delivering energy while the vehicle is asking for it, as can be the case
due to local shortage of electric power for example.

9.5.8.1. Example: Tariff with max_power Tariff Restrictions

Example Tariff to explain the max_power Tariff Restriction:

• Charging fee of € 0.20 per kWh (excl. VAT) when charging with a power of less than 16 kW.

• Charging fee of € 0.35 per kWh (excl. VAT) when charging with a power between 16 and 32 kW.

• Charging fee of € 0.50 per kWh (excl. VAT) when charging with a power above 32 kW (implemented as fallback
tariff without Restriction).

For a charging session where the EV charges the first kWh with a power of 6 kW, increases the power to 48 kW for the
next 40 kWh and reduces it again to 4 kW after that for another 0.5 kWh (probably due to physical limitations, i.e.
temperature of the battery), this tariff will result in costs of € 20.30 (excl. VAT). The costs are composed of the
following components:

• 1 kWh at 6 kW: € 0.20

• 40 kWh at 48 kW: € 20.00

• 0.5 kWh at 4 kW: € 0.10

{
 "country_code": "DE",
 "party_id": "ALL",
 "id": "1",
 "currency": "EUR",
 "type": "REGULAR",
 "elements": [{
 "price_components": [{
 "type": "ENERGY",
 "price": 0.20,

195

 "vat": 20.0
 }],
 "restrictions": {
 "max_power": 16.00
 }
 }, {
 "price_components": [{
 "type": "ENERGY",
 "price": 0.35,
 "vat": 20.0
 }],
 "restrictions": {
 "max_power": 32.00
 }
 }, {
 "price_components": [{
 "type": "ENERGY",
 "price": 0.50,
 "vat": 20.0
 }]
 }],
 "last_updated": "2018-12-05T12:01:09Z"
}

9.5.8.2. Example: Tariff with max_duration Tariff Restrictions

A supermarket wants to allow their customer to charge for free. As most customers will be out of the store in 20
minutes, they allow free charging for 30 minutes. If a customer charges longer than that, they will charge them the
normal price per kWh. But as they want to discourage long usage of their EVSEs, charging becomes much more
expensive after 1 hour:

• First 30 minutes of charging is free.

• Charging fee of € 0.25 per kWh (excl. VAT) after 30 minutes.

• Charging fee of € 0.40 per kWh (excl. VAT) after 60 minutes.

For a charging session with a duration of 40 minutes where 5 kWh are charged during the first 30 minutes and
another 1.2 kWh in the remaining 10 minutes of the session, this tariff will result in costs of € 0.30 (excl. VAT). The
costs are composed of the following components:

• 5 kWh for free: € 0.00

• 1.2 kWh at 0.25/kWh: € 0.30

{
 "country_code": "DE",
 "party_id": "ALL",
 "id": "2",
 "currency": "EUR",
 "type": "REGULAR",
 "elements": [{
 "price_components": [{
 "type": "ENERGY",
 "price": 0.00,
 "vat": 20.0
 }],
 "restrictions": {
 "max_duration": 1800
 }
 }, {
 "price_components": [{
 "type": "ENERGY",

196

 "price": 0.25,
 "vat": 20.0
 }],
 "restrictions": {
 "max_duration": 3600
 }
 }, {
 "price_components": [{
 "type": "ENERGY",
 "price": 0.40,
 "vat": 20.0
 }]
 }],
 "last_updated": "2018-12-05T13:12:44Z"
}

9.5.9. TaxAmount class

Property Type Card. Description

name UnicodeStrin
g[1..50]

1 The name of the tax. Although up to 50 characters are technically
allowed here, the intention is that Parties use short names where
possible, preferring e.g. "VAT" over "Value Added Tax".

amount decimal 1 The amount of money of this tax that is due.

9.5.10. TaxPercentage class

Property Type Card. Description

name UnicodeStrin
g[1..50]

1 The name of the tax. Although up to 50 characters are technically
allowed here, the intention is that Parties use short names where
possible, preferring e.g. "VAT" over "Value Added Tax".

percentage number 1 The applicable tax percentage.

197

10. Tariff Associations
This chapter describes the Tariff Associations module.

An OCPI 3.0 module is a set of Functional Use Cases organised around a certain type of data object being replicated
from one party to another. In the Tariff Associations module, the type of data object is the Tariff Assocation object. A
Tariff Association object describes which Tariff applies at an EVSE for a certain audience from a certain time onward.

10.1. Changes from OCPI 2.2.1
• The Tariff Associations module is new in OCPI 3.0. In OCPI 2.2.1 and earlier, the functionality of the Tariff

Associations module was embedded in the Tariffs module.

10.2. Replicating Tariff Associations objects

10.2.1. UC: 10.01 - Replicate Tariff Association objects from one Party to
another Party

1 Objective(s) 1. Party X on a Platform A obtains and maintains up-to-date copies of which Tariff applies
for whom at the charging infrastructure offered by Party Y

2 Description Using the use cases of the Party-Issued Objects chapter, Tariff Association objects are
replicated from Party Y to Party X

3 Actors eMSP, CPO, NAP, NSP

4 Flow 1. Party X subscribes to Party Y’s Tariff Association objects
2. Party Y pushes all their Tariff Association objects as of subscription time to Party X
3. Party Y pushes every newly updated Tariff Association object to Party X as soon as these
updates happen
4. This continues until either party cancels the subscription

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Tariff Associations module to Party X on Platform A.

6 Postconditions Party X has up-to-date information on the Tariff Association objects of Party Y

7 Error reporting Error reporting happens according to the use cases in the Party-Issued Objects use cases.

8 Remark(s)

Table 45. UC: 10.01 Requirements

ID Precondition Requirement

R.10.01.
01

Platform A SHALL subscribe according to use case
Subscribe to the Party Issued Objects of a certain Module
of a certain Party, using "tariffassociations" as the
ModuleID value.

198

ID Precondition Requirement

R.10.01.
02

Platforms A and B MAY also follow use cases Subscribe to
Party Issued Objects of a certain Module of a certain
Party as a Hub, Subscribe to Party Issued Objects of a
certain Module of a Hub or Subscribe to Party Issued
Objects of a certain Module of a Hub as a Hub while
subscribing according to R.10.01.01

R.10.01.
03

Platform B sends a Party Issued Object update
to Party X on Platform A according to use case
Send a full update of a Party Issued Object to a
Subscribed Platform in the context of the
subscription created according to R.10.01.01

Platform B SHOULD set the value of the "payload" field of
the PartyIssuedObjectUpdate object in the request body
to a JSON object that conforms to the TariffAssociation
object type.

R.10.01.
04

Tariff Association objects are immutable. That is,
Platform B SHALL NOT send an update with a changed
version number for a previously received object using
use case Send a Full Update of a Party-Issued Object to a
Subscribed Platform in the context of a subscription to
the Tariff Associations module.

R.10.01.
05

Platform A receives an update with a changed
version number for a previously received
object using use case Send a Full Update of a
Party-Issued Object to a Subscribed Platform

Platform A SHALL respond with an OcpiResponse with no
value for the payload field and with the status_code field
set to 6003.

NOTE

OCPI 3.0 does not impose limits on how frequently a Tariff Associations sender can send Tariff
Associations, nor on which Tariff Associations can be sent when. Nevertheless, Tariff Associations
senders have to make sure that the Tariff Association receivers can reasonably know which Tariff will
apply when a charging session is started at a certain time. Tariff Associations senders will typically
apply constraint in regards to the following aspects of their sending timing:
• The frequency of updates from CPO to eMSP
• The frequency of price changes from a Driver’s perspective
• Notice time before the Tariff takes effect from the CPO to the eMSP
• Notice time before the Tariff takes effect to the Driver

As of the time of writing, white papers with practical advice on how to manage Tariff communication
are available from the EV Roaming Foundation at https://evroaming.org/white-papers/.

10.3. Remote Procedure Calls on Tariff Association
objects
The Tariff Associations module does not define any Remote Procedure Calls on Tariff Association objects.

10.4. Other Tariff Associations use cases

199

https://evroaming.org/white-papers/

10.4.1. UC: 10.02 - Cancel a Tariff Association

1 Objective(s) 1. Party Y on Platform B makes sure that a Tariff Association that they previously sent to
Party X on Platform A will not be used anymore by Party X to inform Drivers or to check
CDRs' and Sessions' costs.

2 Description Sometimes a Party issues a Tariff Association in some sort of error, and they want to
cancel or undo the issuing in some way. With the Tariff Association system, doing so is not
entirely straightforward, so this use case describes how to do it.

3 Actors CPO, eMSP

4 Flow 1. Party Y on Platform B pushes one or more Tariff Associations to Party X on Platform A
that nullify the effect of a Tariff Association pushed earlier to Party X by Party Y.

5 Preconditions Party X hosted on Platform A is subscribed to Tariffs of Party Y hosted on Platform B.
Party X is subscribed to Tariff Associations of Party Y.
Party X received a Tariff Association from Party Y.
Party Y now wishes to cancel that Tariff Association.

6 Postconditions Party X no longer uses the Tariff Association to inform Drivers or to check Session costs.

7 Error handling None specified.

8 Remark(s)

Table 46. UC: 10.02 Requirements

ID Precondition Requirement

R.10.02.
01

Party Y sends one or more Tariff Associations according
to Replicate Tariff Association objects.

R.10.02.
02

The union of the values of the connectors fields of the
Tariff Association objects mentioned in R.10.02.01 is the
same as the value of the connectors field of the Tariff
Association that Party Y is canceling.

R.10.02.
03

Each of the Tariff Association objects mentioned in
R.10.02.01 has a value for the start_date_time field that
is the same as the value of start_date_time field in the
Tariff Association that Party Y is canceling.

R.10.02.
04

Each of the Tariff Association objects mentioned in
R.10.02.01 has a value for the audience field that is the
same as the value of the audience field in the Tariff
Association that Party Y is canceling.

10.5. Object type definitions

10.5.1. ConnectorReference class

A ConnectorReference uniquely identifies a Connector that a Tariff Association applies a Tariff for.

A Tariff Association can only refer to connectors issued by the same party that issued the Tariff Association. The party

200

ID of the connectors is therefore not explicitly given in the ConnectorReference objects.

Property Type Car
d.

Description

evse_uid CiAsciiString[1..36] 1 The UID of the EVSE in which the connector is that this
ConnectorReference refers to

connector_id CiAsciiString[1..36] 1 The ID of the connector that this ConnectorReference refers to.

10.5.2. TariffAssociation class

Property Type Card. Description

start_date_time DateTime 1 The timestamp at which this Tariff Association comes into effect
(inclusive)

tariff_id CiAsciiString[
1..36]

1 The ID of the Tariff that is applied by this Tariff Association.

connectors ConnectorRe
ference

+ The identifiers of the connectors that this Tariff Association applies a
Tariff to. The receiver SHALL NOT send an error response when it
receives a Tariff Association object referencing connectors that it did
not yet receive via the Locations module. It SHOULD instead store these
dangling references as such and attempt to resolve them once it is
looking up a Tariff for a Session.

audience TariffAudien
ce

1 The audience (MSP contract holders, ad-hoc paying drivers, …) that the
Tariff Association applies a Tariff for.

last_updated DateTime 1 The timestamp when this Tariff Association was last updated or created
by the Party issuing it.

10.5.3. TariffAudience enum

Value Description

AD_HOC_PAYMENT Used to describe that a Tariff Association applies when ad-hoc payment is used at the
Charging Station (for example: Debit or Credit card payment terminal).

PROFILE_CHEAP Used to describe that a Tariff Association applies when Charging Preference CHEAP is set
for the session.

PROFILE_FAST Used to describe that a Tariff Association applies when Charging Preference: FAST is set
for the session.

PROFILE_GREEN Used to describe that a Tariff Association applies when Charging Preference: GREEN is set
for the session.

REGULAR Used to describe that a Tariff Association applies when using an MSP Charging Token,
without any Charging Preference, or when Charging Preference: REGULAR is set for the
session.

201

11. Tokens
This chapter describes the Tokens module.

An OCPI 3.0 module is a set of Functional Use Cases organised around a certain type of data object being replicated
from one party to another. In the Tokens module, the type of data object is the Token. The name Token is short for
Charge Token. What a Charge Token is is defined in the Terminology section of the Functional Use Cases document.
How a Charge Token is represented in OCPI messages is specified below.

The Tokens module gives CPOs knowledge of the Charge Tokens issued by eMSPs. When eMSPs push Token
information to CPOs, CPOs can build a cache of known Tokens. When a request to authorize comes from a Charging
Station, the CPO can check against this cache. With this cached information they know to which eMSP they can later
send a CDR.

Besides this mechanism of authorizing Charge Sessions based on cached Token information, the Tokens module also
offers a use case for real-time authorization, which allows CPOs to request authorization for a Charge Session start
from eMSPs right at the moment that a Driver tries to start charging. OCPI allows for eMSPs to not share their Charge
Tokens with CPOs and instead rely completely on real-time authorization.

eMSPs control which form of authorization, real-time or cache-based, is used by the whitelist field of the Token
objects that they issue. There are, broadly speaking, three approaches for eMSPs:

• Not issue any Tokens via OCPI, that is, not share any Token objects with CPOs. This means that all Charge
Sessions started with the eMSP’s Tokens by a Driver interacting directly with a Charging Station will have to be
authorized through real-time authorization. Also CPOs will have to broadcast authorization requests to all eMSPs
because they can’t tell to which eMSP the Token belongs when they receive the authorization request from the
Charging Station. This option minimizes the upfront sharing of personal information but is the least performant
and resilient. Also it leads to unnecessary sharing of personal and competition sensitive information with the
broadcast authorization requests. For EMAID tokens authenticated with ISO 15118 contract certificates, no
broadcasting of authorization reuqests is necessary with this approach, and this approach becomes very sensible.

• Issue tokens via OCPI and set the whitelist field to NEVER. This means that all Charge Sessions started with the
eMSP’s Tokens by a Driver interacting directly with a Charging Station will have to be authorized through real-
time authorization. But unlike when the eMSP does not issue Tokens at all, the CPO will be able to tell
immediately which eMSP they have to contact for authorization.

• Issue tokens via OCPI and set the whitelist field to ALWAYS. This means that Charge Sessions with the eMSP’s
Tokens by a Driver interacting directly with a Charging Station can be authorized by the CPO without contacting
the eMSP at authorization time. This option is the most performant and resilient but requires the eMSP to share
some customer data with CPOs and makes the eMSP dependent on the CPO’s cooperation to invalidate Tokens
on that CPO’s network.

If an eMSP goes for the third option, and never issues Tokens with whitelist set to anything else than ALWAYS, their
OCPI platform does not have to implement real-time authorization.

11.1. Changes from OCPI 2.2.1
• Removed the country code and party ID, as from all Party Issued Objects, because these are now unambiguously

transferred using the Party Issued Object replication mechanism

• OCPI 3.0 no longer allows an MSP to give real-time authorization for a certain set of EVSEs only, as existed in OCPI
2.2.1 with the location field of the AuthorizationInfo object. The idea is that with OCPI 3.0, CPOs should send

202

their authorize requests as specific as possible with the CPO’s knowledge, so there will be no way for a CPO to
enforce additional constraints from the eMSP.

• In a real-time authorization response, the eMSP can now tell the CPO what Tariff they will charge the Driver, so
the CPO can display this on the Charging Station or pass it on to the vehicle.

• The token_id field in the AuthorizeRequest object was renamed to token_uid.

• Timestamps fields were added to real-time authorization requests and responses to make real-time
authorizations more traceable and more enforceable.

• Fields were added to let the eMSP set limits on time and energy consumption in the real-time authorization
response.

11.2. Replicating Token objects

11.2.1. UC: 11.01 - Replicate Token objects from one Party to another Party

1 Objective(s) 1. Party X on a Platform A obtains and maintains an up-to-date copy of the Token objects
that are issued by Party Y on a Platform B

2 Description Using the use cases of the Party-Issued Objects chapter, Token objects are replicated from
Party Y to Party X

3 Actors eMSP, CPO, Hub

4 Flow 1. Party X subscribes to Party Y’s Token objects
2. Party Y pushes all their Token objects as of subscription time to Party X
3. Party Y pushes every newly updated Token object to Party X as soon as these updates
happen
4. This continues until either party cancels the subscription

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Tokens to Party X on Platform A.

6 Postconditions Party X has up-to-date information on the Charge Tokens issued by Party Y

7 Error reporting Error reporting happens according to the use cases in the Party-Issued Objects use cases.

8 Remark(s)

Table 47. UC: 11.01 Requirements

ID Precondition Requirement

R.11.01.
01

Platform A SHALL subscribe according to use case
Subscribe to the Party Issued Objects of a certain Module
of a certain Party, using "tokens" as the ModuleID value.

203

ID Precondition Requirement

R.11.01.
02

Platforms A and B MAY also follow use cases Subscribe to
Party Issued Objects of a certain Module of a certain
Party as a Hub, Subscribe to Party Issued Objects of a
certain Module of a Hub or Subscribe to Party Issued
Objects of a certain Module of a Hub as a Hub while
subscribing according to R.11.01.01

R.11.01.
03

Platform B sends a Party Issued Object update
to Party X on Platform A according to use case
Send a full update of a Party Issued Object to a
Subscribed Platform in the context of the
subscription created according to R.11.01.01

Platform B SHOULD set the value of the "payload" field of
the PartyIssuedObjectUpdate object in the request body
to a JSON object that conforms to the Token object type.

R.11.01.
04

Platform B sends a Party Issued Object update
to Party X on Platform A according to use case
Send a full update of a Party Issued Object to a
Subscribed Platform in the context of the
subscription created according to R.11.01.01

Platform B SHALL set the id field of the
PartyIssuedObjectUpdate object in the request body to a
string that uniquely identifies the token among all
Tokens issued by Party Y. Party Y MAY use the value of
the Token’s uid field as the value for the id field in
PartyIssuedObjectUpdate if Party Y can guarantee that
the uid values of their Tokens are unique among all
Tokens they issued. Party Y MAY also use generated
unique IDs, in which case Party Y can issue multiple
Tokens with the same value for the uid field.

11.2.2. Example token objects

11.2.2.1. Example APP_USER token

{
 "uid": "bdf21bce-fc97-11e8-8eb2-f2801f1b9fd1",
 "type": "APP_USER",
 "contract_id": "DE8ACC12E46L89",
 "issuer": "TheNewMotion",
 "valid": true,
 "whitelist": "ALLOWED",
 "last_updated": "2018-12-10T17:16:15Z"
}

11.2.2.2. Example RFID token

{
 "uid": "12345678905880",
 "type": "RFID",
 "contract_id": "DE8ACC12E46L89",
 "visual_number": "DF000-2001-8999-1",
 "issuer": "TheNewMotion",
 "group_id": "DF000-2001-8999",
 "valid": true,
 "whitelist": "ALLOWED",
 "language": "it",
 "default_profile_type": "GREEN",
 "energy_contract": {
 "supplier_name": "Greenpeace Energy eG",
 "contract_id": "0123456789"

204

 },
 "last_updated": "2018-12-10T17:25:10Z"
}

11.2.2.3. Example EMAID token

{
 "uid": "DE8ACC12E46L89",
 "type": "EMAID",
 "contract_id": "DE8ACC12E46L89",
 "issuer": "TheNewMotion",
 "group_id": "DF000-2001-8999",
 "valid": true,
 "whitelist": "NEVER",
 "language": "it",
 "default_profile_type": "GREEN",
 "energy_contract": {
 "supplier_name": "Greenpeace Energy eG",
 "contract_id": "0123456789"
 },
 "last_updated": "2023-12-15T10:15:10Z"
}

11.3. Remote Procedure Calls on Token Objects

11.3.1. UC: 11.02 - Ask for real-time charge authorization

1 Objective(s) 1. Party X knows that Party Y authorizes a Charge Session with one of Party Y’s tokens on
one of the Locations issued by Party X

2 Description A remote procedure call is made by Party X to Party Y. In the request Party X sends the
specifics of the Charge Session that they wish to start. Party Y then responds, informing
Party X of whether they authorize the Session or not.

3 Actors eMSP, CPO

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains the Charge Token that the Driver is offering, the
Location ID of the Location on which Party X wants to start a Session, a timestamp of when
the CPO first learned of the authorization request, and optionally a list of Connector IDs on
which the Session may be started if authorized.
2. Party Y decides if they authorize a Session with the given details.
3. Party Y sends a response to Party X informing Party X of Party Y’s decision.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Tokens to Party X on Platform A.

6 Postconditions Party X knows Party Y authorizes a session with the given details.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

205

8 Remark(s) This use case is explicitly not meant for real-time tariff negotiations. While one could
imagine adding a Tariff field to the authorization request and a "too expensive" status
code to the response, such proposals were discussed and decided against during OCPI 3.0
development. In the OCPI Development Working Group there was a consensus at the time
that the industry is currently not ready for automated real-time pricing negotiation
between CPO and eMSP.

Charging Station Platform A Platform B

Let's assume that someone swiped an RFID card with UID ABCDEF01020304 on a
Charging Station operated by a Party DEPTX hosted on Platform A.
Party DEPTX is seeking authorization for a Charge Session with this Token at
this Charging Station from one or more eMSPs, including one with Party ID
DKPTY hosted on Platform B.

Let's assume also that DKPTY will grant authorization.

Request authorization for a Charge Session
with an RFID Token with UID ABCDEF01020304

POST /ocpi/from/DEPTX/to/DKPTY/tokens/authorize
+ Token UID
+ Token Type
+ Location ID

DKPTY checks if it is willing to authorize
the Charge Session as requested by DEPTX

HTTP 200 OK
+ allowed ALLOWED

Authorization granted

Figure 47. Sequence Diagram: Ask for real-time charge authorization

Table 48. UC: 11.02 Requirements

ID Precondition Requirement

R.11.02.
01

Platform A SHALL make the request to reserve an EVSE
following Make a Remote Procedure Call on behalf of a
Party to another Party on another Platform.

R.11.02.
02

Platform A SHALL use "authorize" as the operation name
for Make a Remote Procedure Call on behalf of a Party to
another Party on another Platform.

R.11.02.
03

Platform A SHALL use POST as the HTTP request verb
when making its request.

R.11.02.
04

Platform A SHALL use a AuthorizeRequest in the payload
field of the request body for Make a Remote Procedure
Call on behalf of a Party to another Party on another
Platform.

R.11.02.
05

Platform B SHALL include a AuthorizeResponse in the
payload field of the OcpiResponse object in the response
body according to Make a Remote Procedure Call on
behalf of a Party to another Party on another Platform.

206

ID Precondition Requirement

R.11.02.
06

Party Y SHOULD NOT validate that charging is possible
based on information shared by Party X via the Location
module, like opening hours or EVSE status, etcetera.
Such information might not be up to date and it is not
the eMSP’s responsibility to check if a Session is possible
on the CPO side.

R.11.02.
07

Party X wants to start a transaction with a
Token issued by Party Y on a Location that it
did not issue to Party Y

Party X MAY send an AuthorizeRequest containing a
Location ID of a Location that was never shared with
Party Y

R.11.02.
08

Party Y does not recognize the pair of token
UID and token type given in the request from
Platform A

Platform B SHALL set the status_code field in the
response to 7001 following the Make a Remote
Procedure Call on behalf of a Party to another Party on
another Platform use case.

11.4. Object type definitions

11.4.1. AllowedType enum

Value Description

ALLOWED This Token is allowed to charge (at the given Location).

BLOCKED This Token is blocked.

EXPIRED This Token has expired.

NO_CREDIT This Token belongs to an account that has not enough credits to charge (at the given
Location).

REQUEST_TOO_BROAD This Token is not allowed to charge at the whole Location or all of the Connectors in the
request, but may be authorized to charge on a subset of the Connectors that
authorization was requested for.

NOT_ALLOWED The Token not allowed to charge at the Location or at any of the Connectors that
authorization was requested for.

11.4.2. AuthorizeRequest class

Property Type Card. Description

token_uid CiAsciiString[
[1..255]]

1 Token UID of the Token for which authorization is requested

type TokenType ? Type of the Token that authorization is requested for. By default
this is RFID.

207

Property Type Card. Description

presentation_timestamp DateTime 1 The time at which the CPO first learned of the authorization
request with this token. If possible, this could be the timestamp
at which a token was presented to the Charging Station on site,
like when a physical RFID token was presented to an RFID
reader, or or when a contract certificate was read from a vehicle.
If the Charging Station does not provide the CPO with such
timestamps, the CPO can use the timestamp of when they
received the authorization request from the Charging Station.

location_id CiAsciiString[
1..255]

1 The ID of the Location on which the CPO is starting the Charge
Session that it is seeking authorization for.

evse_uids CiAsciiString[
1..36]

* A list of UIDs of EVSEs. If this is set, it means that the CPO is
seeking authorization to start a Session on one of these EVSEs.
The idea behind this field is that if a CPO receives an OCPP 1.6
Authorize request from a Charging Station, it knows that the
session will happen on one of the EVSEs of that Charging Station
but it will not be sure which one of those EVSEs it will be. This
field allows the CPO to share its knowledge of which EVSEs the
authorization request applies to with the eMSP.
OCPI is using a list of EVSE UIDs here instead of a
ChargingStation ID because OCPP 1.6 Charge Points are not
necessarily mapped one-to-one to OCPI Charging Stations.

NOTE
although the presentation_timestamp field is included for traceability, CPOs are not expected to use
the real-time authorization to obtain retroactive authorization for Sessions that have already started.
If CPOs do so anyway, eMSPs are expected to reject such authorization requests.

11.4.3. AuthorizeResponse class

Property Type Card. Description

allowed AllowedType 1 Status of the Token, and whether charging is allowed at the
Location given in the corresponding AuthorizationRequest,
possibly restricted to the EVSEs given in the
AuthorizationRequest.

token Token 1 The complete Token object for which this authorization was
requested.

authorization_reference CiAsciiString[
1..36]

? Reference to the authorization given by the eMSP. When given,
this reference will be provided in the relevant Session and CDR.

authorization_timestamp DateTime 1 The time from which the Token is authorized to charge at the
Location given in the request. The eMSP MAY dispute the
resulting CDR if the CPO uses the authorization reference for a
Session that started before this timestamp.

208

Property Type Card. Description

authorized_until DateTime 1 The time until which the Token is authorized to charge at the
Location given in the request. The eMSP MAY dispute the
resulting CDR if the CPO uses the authorization reference for a
Session that started at or after this timestamp.

max_energy number ? If given, this is the maximum amount of energy that the eMSP is
authorizing the CPO to let the Driver charge. If the CPO starts a
Charging Session for this authorization, and sends the eMSP a
CDR for that Session with more energy consumed than the
amount of kWh given in this field, then the eMSP MAY dispute
the CDR.
This field is meant to facilitate pre-paid eMSP models. It is
typically left unfilled in other scenarios.

max_time number ? If given, this is the maximum amount of time that the eMSP is
authorizing the CPO to let the Driver charge for. If the CPO
starts a Charging Session for this authorization, and sends the
eMSP a CDR for that Session than lasted longer than the amount
of hours given in this field, then the eMSP MAY dispute the CDR.
This field is meant to facilitate pre-paid eMSP models. It is
typically left unfilled in other scenarios.

info DisplayText ? Optional display text, additional information to the EV driver.

display_tariff Tariff ? The Tariff that will be charged by the eMSP to the Driver, to be
displayed on the Charging Station. This added because
regulations in the US State of California require that a Driver see
on the Charging Station what they will be paying when they start
a Charging Session.
This field can also be used in combination with IEC 15118 to
provide pricing information from the Charging Station to the
vehicle.
Where these two use cases do not apply, this field may be left
empty.

11.4.4. EnergyContract class

Information about a energy contract that belongs to a Token so a driver could use his/her own energy contract when
charging at a Charging Station.

Property Type Card. Description

supplier_name UnicodeStrin
g[1..64]

1 Name of the energy supplier for this token.

contract_id UnicodeStrin
g[1..64]

? Contract ID at the energy supplier, that belongs to the owner of this
token.

209

11.4.5. Token class

Property Type Card. Description

uid CiAsciiString[
1..36]

1 Unique ID by which this Token, combined with the Token type, can be
identified.
In the case of RFID tokens, this is the UID according to ISO/IEC 14443,
which is the field used by CPO system (RFID reader on the Charge Point)
to identify this token.
If this is a APP_USER or AD_HOC_USER Token, it will be a unique ID
generated by the eMSP.
If this is an EMAID Token, it will be the contract ID. This means that for
Tokens with type EMAID, the fields uid and contract_id will hold the
same value.

type TokenType 1 Type of the token

contract_id CiAsciiString[
1..36]

1 Uniquely identifies the EV Driver contract within the eMSP’s platform
(and suboperator platforms). Recommended to follow the specification
for eMA ID from "eMI3 standard version V1.0"
(http://emi3group.com/documents-links/) "Part 2: business objects."

visual_number UnicodeStrin
g[1..64]

? Visual readable number/identification as printed on the Token (RFID
card), might be equal to the contract_id.

issuer string[1..64] 1 Issuing company, most of the times the name of the company printed
on the token (RFID card), not necessarily the eMSP.

group_id CiAsciiString[
1..36]

? This ID groups a couple of tokens. This can be used to make two or
more tokens work as one, so that a session can be started with one
token and stopped with another, handy when a card and key-fob are
given to the EV-driver.
Beware that OCPP 1.5/1.6 only support group_ids (it is called parentId in
OCPP 1.5/1.6) with a maximum length of 20.

valid_from datetime 1 A point in time from which the Token is valid, inclusive.

valid_until datetime ? A point in time when the validity of the token ends.

whitelist WhitelistTyp
e

1 Indicates what type of white-listing is allowed.

language CiAsciiString[
2]

? Language Code ISO 639-1. This optional field indicates the Token
owner’s preferred interface language. If the language is not provided or
not supported then the CPO is free to choose its own language.

default_profile_type ProfileType ? The default Charging Preference. When this is provided, and a charging
session is started on an Charging Station that support Preference base
Smart Charging and support this ProfileType, the Charging Station can
start using this ProfileType, without this having to be set via: Set
Charging Preferences.

210

http://emi3group.com/documents-links/

Property Type Card. Description

energy_contract EnergyContr
act

? When the Charging Station supports using your own energy
supplier/contract at a Charging Station, information about the energy
supplier/contract is needed so the CPO knows which energy supplier to
use.
NOTE: In a lot of countries it is currently not allowed/possible to use a
drivers own energy supplier/contract at a Charging Station.

last_updated DateTime 1 Timestamp when this Token was last updated (or created).

The combination of uid and type should be unique for every token within the eMSP’s system.

NOTE
OCPP supports group_id (or ParentID as it is called in OCPP 1.5/1.6) OCPP 1.5/1.6 only support group
ID’s with maximum length of string(20), case insensitive. As long as EV-driver can be expected to
charge at an OCPP 1.5/1.6 Charging Station, it is adviced to not used a group_id longer then 20.

11.4.6. TokenType OpenEnum

Value Description

AD_HOC_USER One time use Token ID generated by a server (or App.) The eMSP uses this to bind a
Session to a customer, probably an app user.

APP_USER Token ID generated by a server (or App.) to identify a user of an App. The same user uses
the same Token for every Session.

EMAID An EMAID. EMAIDs are used as Tokens when the Charging Station and the vehicle are
using IEC 15118 for communication.

RFID RFID Token, typically using the ISO/IEC 14443 standard.

NOTE
The eMSP is RECOMMENDED to push Tokens with type AD_HOC_USER or APP_USER with whitelist set to
NEVER. Whitelists are very useful for RFID type Tokens, but the AD_HOC_USER/APP_USER Tokens are used
to start Sessions at the initiative of the eMSP, so the CPO whitelisting them has no advantages.

NOTE

The eMSP is RECOMMENDED to not push Tokens with type EMAID at all. Replicating these as Party
Issued Objects is not necessary because the CPO already learns which Party issued the Token from
the Charging Station. The CPO can then contact this Party for real-time authorization using Use Case
Ask for real-time authorization.

NOTE
The management of contract certificates used with IEC 15118 to authenticate the vehicle are left
ouside of OCPI 3.0 for now. There are other existing standards for exchanging and validating
certificates that Parties can use to authenticate contract certificates.

11.4.7. WhitelistType enum

Defines when authorization of a Token by the CPO is allowed.

The validity of a Token has no influence on this. If a Token is not valid at the time of the authorization check according
to the valid_from and valid_until fields, when the whitelist field requires real-time authorization, the CPO SHALL do

211

a real-time authorization to check if the Token is still not valid.

Value Description

ALWAYS Token always has to be whitelisted, realtime authorization is not possible or not allowed.
CPO shall always decide on authorization of Sessions for this Token without contacting
the eMSP.

ALLOWED It is allowed to whitelist the token, realtime authorization is also allowed. The CPO may
choose which version of authorization to use.

ALLOWED_OFFLINE In normal situations realtime authorization shall be used. But when the CPO cannot get a
response from the eMSP (communication between CPO and eMSP is offline), the CPO
SHALL decide on authorization of a Session with this Token based on the CPO’s cached
Token information.

NEVER Whitelisting is forbidden, only realtime authorization is allowed. CPO shall always send a
realtime authorization for any use of this Token to the eMSP.

212

12. Invoice Reconciliation
This chapter describes the Invoice Reconciliation module.

An OCPI 3.0 module is a set of Functional Use Cases organised around a certain type of data object being replicated
from one Party to another. In the Invoice Reconciliation module, the type of data object is the Invoice Reconciliation
Record (IRR). An IRR specifies which CDRs are listed on which invoice.

12.1. Changes from OCPI 2.2.1
The Invoice Reconciliation module provides functionality that is completely new to OCPI in version 3.0.

12.2. High-level description
This section is not normative.

The Invoice Reconciliation serves to enable Parties that receive invoices for Charging Sessions to check the amounts
of these invoices against the CDR data that they transferred via OCPI.

It is deliberately flexible so that Parties that invoice among each other, typically CPOs and EMPS, are still free to
decide:

• When they invoice (for example, with a monthly billing cycle or with a new invoice for every Charging Session)

• How they transfer the actual invoice documents (postal mail, e-mail, or purpose-made IT solutions)

• How they pay the invoices

The workflow for invoice reconciliation will work somewhat differently depending on whether the invoicing Parties
use direct billing or reverse billing. Direct billing is the situation in which the Party who delivered the service, that is
typically the CPO, sends invoices to the Party who consumed the service, that is typically the MSP. Reverse billing is
the situation in which the Party who consumed the service, that is typically the eMSP, sends invoices for credit
amounts to the Party who delivered the service, that is typically the CPO.

With direct billing the flow for Invoice Reconciliation looks like this:

213

CPO

CPO

EMSP

EMSP

CDR 1

CDR 2

CDR 3

March ends

CDR 4

CPO runs billing for sessions of March

publish Invoice Reconciliation Record: { "invoice_id": "INV202303", "cdr_ids": ["1", "2", "3"] }

CPO emails invoice PDF to EMSP

EMSP checks invoice total from CPO

What we see here is a process with the following steps:

• The CPO conducts Charging Sessions and issues CDRs for them to the eMSP

• At some point, at the CPO’s discretion, the CPO runs billing and produces an invoice for the Charging Sessions. In
the diagram, as an example, we assume that the CPO runs a monthly billing cycle and the end of the month of
March is the trigger for them to produce an invoice.

• Once the CPO completes the invoice, it publishes an Invoice Reconciliation Record of it to the MSP

• Note that in the example, a CDR 4 is delivered between the moment March ends and the Invoice Reconciliation
Record for the March invoice is published. It is published before the IRR is published, but is nevertheless not
mentioned in the IRR and not invoiced by the invoice that the IRR is about. This CDR 4 in the xample serves to
illustrate that the set of invoices referenced by an Invoice Reconciliation Record is not determined by timing, but
by the list of invoice IDs in the IRR.

• The CPO also delivers the invoice to the eMSP. How precisely this happens is not relevant, as long as the eMSP’s
staff are able to access the invoice document.

• When the eMSP has both the IRR and the invoice, they can easily reconcile by computing the total amount for the
IRR’s CDRs in their own systems, and comparing this computed amount to the amount listed in the invoice
document.

When we change the flow so that reverse billing is used, and all other aspects remain the same, we get this flow:

214

CPO

CPO

EMSP

EMSP

CDR 1

CDR 2

CDR 3

March ends

CDR 4

MSP runs billing for sessions of March

publish Invoice Reconciliation Record: { "invoice_id": "INV202303", "cdr_ids": ["1", "2", "3"] }

MSP emails invoice PDF to CPO

CPO checks invoice total from MSP

We see here that the billing cycle is started at the eMSP instead of the CPO, and from that point on, the
communication pattern between the two Parties is exactly reversed compared to the direct billing scenario. Although
accordingly the roles of Invoice Reconciliation Record sender and receiver are reversed among the CPO and the
eMSP, the very same technical OCPI interface can be used for both scenarios. The following normative parts of the
specification of this module make no distinction between direct and reverse billing. Nevertheless, both approaches
are possible and the Invoice Reconciliation module can be used with both.

12.3. Replicating Invoice Reconciliation Record objects

12.3.1. UC: 12.01 - Replicate Invoice Reconciliation objects from one Party to
another Party

1 Objective(s) 1. Party X on a Platform A obtains and maintains up-to-date information of which CDRs
have been invoiced with which invoices that Party Y sent to Party X

2 Description Using the use cases of the Party-Issued Objects chapter, Invoice Reconciliation Records
objects are replicated from Party Y to Party X

3 Actors eMSP, CPO, NAP, NSP

4 Flow 1. Party X subscribes to Party Y’s Invoice Reconciliation Records objects
2. Party Y pushes all their Invoice Reconciliation Record Objects for Party X as of
subscription time to Party X
3. Party Y pushes every newly created Invoice Reconciliation Record object to Party X as
soon as it sent an invoice to Party X and created the Invoice Reconciliation Record for it.
4. This continues until either party cancels the subscription

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Invoice Reconciliation module to Party X on Platform A.

215

6 Postconditions Party X has up-to-date information on the Invoice Reconciliation Record objects that Party
Y made for Party X

7 Error reporting Error reporting happens according to the use cases in the Party-Issued Objects use cases.

8 Remark(s)

Table 49. UC: 12.01 Requirements

ID Precondition Requirement

R.12.01.
01

Platform A SHALL subscribe according to use case
Subscribe to the Party Issued Objects of a certain Module
of a certain Party, using "irrs" as the ModuleID value.

R.12.01.
02

Platforms A and B MAY also follow use cases Subscribe to
Party Issued Objects of a certain Module of a certain
Party as a Hub, Subscribe to Party Issued Objects of a
certain Module of a Hub or Subscribe to Party Issued
Objects of a certain Module of a Hub as a Hub while
subscribing according to R.12.01.01

R.12.01.
03

Platform B sends a Party Issued Object update
to Party X on Platform A according to use case
Send a full update of a Party Issued Object to a
Subscribed Platform in the context of the
subscription created according to R.12.01.01

Platform B SHOULD set the value of the "payload" field of
the PartyIssuedObjectUpdate object in the request body
to a JSON object that conforms to the
InvoiceReconciliationRecord object type.

12.4. Remote Procedure Calls on Invoice Reconciliation
Record objects
The Invoice Reconciliation module does not define any Remote Procedure Calls on Invoice Reconciliation Record
objects.

12.5. Object type definitions

12.5.1. InvoiceReconciliationRecord class

Property Type Card. Description

invoice_id CiAsciiString[1..255] 1 An identifier identifying an invoice sent by the party
issuing this IRR. The precise format is up to the sender
and receiver parties to decide. The intended workflow
will work as long as the receiver can use the identifier to
find the invoice that this IRR lists the CDRs for. For
example, these invoice identifiers might be opaque
document IDs but could also identify the invoice out of a
monthly billing cycle with a string like 2023-06.

216

Property Type Card. Description

cdr_ids CiAsciiString[1..255] + The unique CDR identifiers of the CDRs that are invoiced
by the invoice identified by the value of the invoice_id
field.

last_updated DateTime 1 Timestamp at which this Invoice Reconciliation Record
was issued

217

13. Power Regulation
This chapter describes the Power Regulation module.

An OCPI 3.0 module is a set of Functional Use Cases organised around a certain type of data object being replicated
from one party to another. In the Power Regulation module, the type of replicated data object is the MeterSample. A
MeterSample is a record of the energy, power, current, voltage and/or other quantities related to a Charging Session
at a certain time.

With the Power Regulation module, parties (SCSPs but also eMSPs) can send Charging Profiles for a certain Charging
Session or grouping of EVSEs to a CPO. These Charging Profiles instruct the CPO what the the rate of energy transfer
should be at which time during the affected Charging Session or Charging Sessions. After sending the Charging
Profiles, the SCSP or eMSP can use Party Issued Object replication to receive the Meter Samples related to the
Charging Sessions that they sent Charging Profiles for. This process of influencing and monitoring the rate of energy
transfer in a Charging Session is widely known as "Smart Charging".

The following sequence diagram illustrates the general flow of Smart Charging or Power Regulation in OCPI 3.0.

Platform A
Hosts Party X who performs Power Regulation

Platform B
Hosts Party Y who issue Sessions that are regulated

Party X subscribes to Party Y's Locations and/or Sessions.

Party Y's Locations and/or Sessions are replicated to Party X.

Party X subscribes to Party Y's Meter Readings.

Party X sets Charging Profiles on one or more Sessions and/or Locations.

Party Y sends Party X Meter Readings showing the execution of the Charging Profiles.

Figure 48. Sequence Diagram: General flow of Power Regulation

TODO how about V2G / bidirectional charging? Profiles only have a "maximum limit" as of now

It is also possible to request the 'ActiveChargingProfile' from a Location/EVSE where a Charging Session is ongoing.

The ActiveChargingProfile is the Charging Profile as calculated by the EVSE. It is the result of the calculation of all
smart charging inputs present in the EVSE, also Local Limits might be taken into account.

The Charging Profile concept in OCPI is similar to the concept of Charging Profiles in OCPP, but exposes this
functionality to third parties. These objects and the accompanying interfaces provide certain abstractions that make
them more suitable for energy parties to signal their intent. The data structures are based on those in OCPP versions
1.6 and 2.0.1 to make conversion of messages between OCPI and OCPP easy.

NOTE

Charging Profiles set via this module are no guarantee that the EV will charge with the exact given
limit, for it is a limit, not a target. A lot of factors influence the charging power. The EV might not take
the amount of energy that the EVSE is willing to provide to it, or the battery might be too warm or
almost full. A single phase cable might be used on a three phase Charging Station. There can be
local energy limits (load balancing between EVSEs on a relative small energy connection to a group
of EVSEs) that might limit the energy offered by the EVSE to the EV even further.

A Charging Profile can be set by the owner of a Token on Sessions that belong to that token. If another party sends a
ChargingProfile and the CPO has no contract that allows that party to set profiles on sessions, the CPO is allowed to
reject such profiles.

218

This module can be used by the eMSP, but can also be used by another party that provide "Smart Charging Services"
(Smart Charging Service Provider (SCSP) / Aggregator / Energy Service Broker etc.) These SCSPs then depend on the
CPO sending Locations and/or Sessions information to them. They need to know which Locations are available or
which Sessions are ongoing to be able to influence them.

If an SCSP uses this module, read eMSP as SCSP.

Most Charging Stations are hooked up to the internet via a relatively slow wireless connection. To prevent long
blocking calls, the calls to the CPO in the Power Regulation module are designed to work asynchronously using the
Make a Remote Procedure Call Allowing Asynchronous Responses use case.

The CPO can limit the amount of request that can be done on the Power Regulation interface. This allows the CPO to
prevent creating a too high load or data usages. To do this the CPO can reject a request on the Charging Profile
Receiver interface be responding with: TOO_OFTEN.

NOTE
OCPI provides the means for SCSPs to do certain things. Parties using OCPI still have to adhere to
local privacy laws, have to have agreed on contracts etc. Local laws might oblige explicit consent
from the driver etc.

Module dependency: Sessions module, Locations module.

13.1. A note for the reviewers
This module has been substantially overhauled since OCPI 2.2.1. It was renamed from Charging Profiles to Power
Regulation in the process.

The new name reflects a new perspective on Smart Charging compared to earlier versions of OCPI and also OCPP.
Unlike these standards, OCPI 3.0 sees Smart Charging as a process of bidirectional communication. It is not just about
one Party sending Charging Profiles to another Party; it is equally well about the other Party sending feedback about
the actual realized charging power. Without such feedback, the Party sending the profiles would be flying blind.

This module now includes its own data format for sending data about the power consumption ongoing Charging
Sessions and of EVSEs: the MeterSample object. We have chosen to separate this from the Sessions module because
the typical eMSP’s use case is different from the typical SCSP’s, and these Parties typically have different information
needs. SCSPs want to know things about the power that would be uninteresting to a Driver and their eMSP, like how
many amps are flowing on which phase or how much power a whole Location is drawing from the grid. eMSPs on the
other hand are interested in personally identifying information (PII) that allows them to relate the Charging Session to
a customer of theirs, which may be irrelevant and inappropriate for an SCSP to know.

This does not mean that data from the Sessions and Power Regulation modules cannot be joined in one system, or
that a certain Party cannot play the eMSP and SCSP roles at the same time. This is still possible with OCPI 3.0; it is just
not required.

The definition of the MeterSample object is probably incomplete. It was written without detailed input from SCSPs or
CPOs with good experience doing Smart Charging. The following are examples of things that are currently not
included because we’re not sure if these should be included, and if so, how they should be:

• Voltage measurements, and

• Energy delivery over a certain time period (that is transferring a period start timestamp, period end timestamp
and energy quantity).

219

We are very curious how parties with more experience in Smart Charging appreciate the perspective shift that OCPI
3.0 tries to introduce here, and if they do, which extra possibilities they would need in the MeterSample object to
make it work optimally for them.

13.2. Smart Charging Topologies
There are different Smart Charging Topologies possible. Which topology can be used depends on the contracts
between different parties.

NOTE

Care has to be taken to prevent mixing the different topologies. When multiple parties start sending
Charging Profiles, the resulting charging power might be unpredictable. In case of OCPP Charging
Stations, the result will be the minimum of all the Charging Profiles, resulting in a slower than
needed charging power.

13.2.1. The eMSP generates Charging Profiles.

The most straight forward topology, the eMSP generates Charging Profiles for its own Drivers, no SCSP is involved.
The eMSP holds the relation to the Driver, so if the eMSP knows that its Driver agrees with the eMSP manipulating the
charging power, the eMSP is free to do this.

eMSP CPO Charge Point
OCPI

Figure 49. Smart Charging Topology: The eMSP generates Charging Profiles.

OCPI Module Role Business Role

MeterSample sender CPO

MeterSample receiver eMSP

13.2.2. The eMSP delegated Smart Charging to SCSP.

In this topology, the eMSP has delegated the generation of Charging Profiles to an SCSP. For this, the eMSP and SCSP
have agreed to use OCPI as the interface.

The eMSP holds the relation to the Driver, so if the eMSP knows that its Driver agrees with the eMSP manipulating the
charging power, the eMSP is free to do this. The eMSP can forward OCPI Session, Location and/or MeterSample
objects to the SCSP. The SCSP can act on the received/updated objects, by sending Charging Profiles via the eMSP to
the CPO.

The eMSP and SCSP have to take into account that they have to oblige to local privacy laws when exchanging
information about eMSPs' Drivers.

From the CPO point of view, this topology is similar to the one above, the CPO will not know the difference.

SCSP eMSP CPO Charge Point
OCPI OCPI

Figure 50. Smart Charging Topology: The eMSP generates Charging Profiles.

220

Connection OCPI Module Role Business Role

SCSP - eMSP MeterSample receiver SCSP

SCSP - eMSP MeterSample sender eMSP

eMSP - CPO MeterSample receiver eMSP

eMSP - CPO MeterSample sender CPO

13.2.3. The CPO delegated Smart Charging to SCSP.

In this topology, the CPO has delegated the generation of Charging Profiles to a SCSP. For this, the CPO and SCSP
have agreed to use OCPI as the interface.

The CPO holds a relation to the EVSE on which charging happens, or to the owner of said EVSE. As the CPO does not
have a direct relation with the Drivers, the CPO needs to make sure the EV driver knows that the charging power
might not be the maximum the driver has expected, this could be something as simple as a sticker on the Charging
Station, or might even be part of the tariff text.

The CPO might generate Charging Profiles themselves, but as OCPI is then not used this is not part of this document.

The CPO can forward OCPI Location, Session and/or MeterSample objects to the SCSP. the SCSP can act on the
received/updated objects, by sending Charging Profiles to the CPO.

The CPO and SCSP have to take into account that they have to oblige to local privacy laws when exchanging
information about eMSPs' Drivers.

In this topology, the eMSP is not aware that the CPO is using OCPI to receive Charging Profiles from the SCSP.

eMSP

SCSP

CPO Charge Point

OCPI

OCPI

Figure 51. Smart Charging Topology: The eMSP generates Charging Profiles.

OCPI Module Role Business Role

MeterSample receiver SCSP

MeterSample sender CPO

13.3. Changes from OCPI 2.2.1
• The module has gained functionalities for the SCSP or eMSP to receive feedback about the effect of the profiles

that they sent.

• The module was renamed from Charging Profiles to Power Regulation accordingly.

• The module now allows SCSPs and eMSPs to set Charging Profiles on groupings of EVSEs, in addition to allowing
to set Profiles on Charging Sessions.

221

• The module now allows SCSPs and eMSPs to set default Charging Profiles on EVSEs.

• The functionality of pushing the active Charging Profile was removed. As an alternative, consider use cases
Replicate MeterSample objects from one Party to another Party or Notify Party of Active Charging Profile.

13.4. Replicating MeterSample objects

13.4.1. UC: 13.01 - Replicate MeterSample objects from one Party to another
Party

1 Objective(s) 1. Party X on a Platform A obtains a meter readings data point from Party Y’s charging
infrastructure.

2 Description Using the use cases of the Party-Issued Objects chapter, MeterSample objects are
replicated from Party Y to Party X

3 Actors SCSP, CPO, eMSP, Hub

4 Flow 1. Party X subscribes to Party Y’s Power Regulation module
2. Party X sets one or more Charging Profiles on Party Y’s EVSEs and/or Charging Sessions.
3. Party Y pushes meter reradings relevant to Party X for regulation, as soon as Party Y
receives these readings from the charging devices.
4. This continues until either party cancels the subscription, or Party X stops setting
Charging Profiles on Party Y’s EVSEs and/or Charging Sessions.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Power Regulation to Party X on Platform A.

6 Postconditions Party X has accurate, near realtime knowledge of the power of EVSEs and/or Charging
Sessions that it set Charging Profiles on.

7 Error reporting Error reporting happens according to the use cases in the Party-Issued Objects use cases.

8 Remark(s)

Table 50. UC: 13.01 Requirements

ID Precondition Requirement

R.13.01.
01

Platform A SHALL subscribe according to use case
Subscribe to the Party Issued Objects of a certain Module
of a certain Party, using "metersamples" as the ModuleID
value.

R.13.01.
02

Platforms A and B MAY also follow use cases Subscribe to
Party Issued Objects of a certain Module of a certain
Party as a Hub, Subscribe to Party Issued Objects of a
certain Module of a Hub or Subscribe to Party Issued
Objects of a certain Module of a Hub as a Hub while
subscribing according to R.13.01.01

222

ID Precondition Requirement

R.13.01.
03

Platform B sends a Party Issued Object update
to Party X on Platform A according to use case
Send a full update of a Party Issued Object to a
Subscribed Platform in the context of the
subscription created according to R.13.01.01

Platform B SHOULD set the value of the "payload" field of
the PartyIssuedObjectUpdate object in the request body
to a JSON object that conforms to the MeterSample
object type.

13.5. Remote Procedure Calls for Power Regulation

13.5.1. UC: 13.02 - Set a Charging Profile on a grouping of EVSEs

1 Objective(s) Party Y applies a Charging Profile to a EVSE or a group of EVSEs as instructed by Party X

2 Description An asynchronous remote procedure call is made by Party X to Party Y. In the request Party
X sends the Charging Profile that they wish to apply and the EVSEs to which they wish it to
be applied. In the response Party Y sends a confirmation or a rejection of the Charging
Profile application.

3 Actors SCSP, CPO

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains the Charging Profile and the IDs of the EVSEs to
apply it to.
2. Party Y decides if it accepts this Charging Profile for application to these EVSEs.
3. If Party Y accepts, it applies the Charging Profile to these EVSEs and informs Party X that
it was applied.
4. If Party Y does not accept, it informs Party X that the Charging Profile is not applied.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Power Regulation to Party X on Platform A.

6 Postconditions One of these two:

* Party X knows Party Y rejected their attempt to apply a Charging Profile to one or more
of Party Y’s EVSEs

* Party Y applied the Charging Profile to the EVSEs mentioned in Party X’s request. Also
Party X knows that their request was turned into action and that they can expect to receive
Meter Samples about the realised energy consumption at those EVSEs.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

223

Receiver
SCSP

Party ID NLPTX

CPO
Sender

Party ID BEPTY

First, NLPTX learns about BEPTY's Locations

subscribe to BEPTY's Locations

replicate Locations; let's as an example say that
these include EVSEs with IDs 12, 34 and 56.

Calculate Charging Profile

POST /ocpi/from/NLPTX/to/BEPTY/meterreadings/set-charging-profile-on-evses
+ Charging Profile
+ evses = [12, 34, 56]

HTTP 200 OK
status ACCEPTED

Sets Charging Profile on Charging Stations
and obtains confirmation

POST /ocpi/from/BEPTY/to/NLPTX/async-responses/<callback ID>
+ result type SUCCESS

Figure 52. Sequence Diagram: Set a Charging Profile on a grouping of EVSEs

Table 51. UC: 13.02 Requirements

ID Precondition Requirement

R.13.02.
01

Platform A SHALL make the request to apply a Charging
Profile to one or more EVSEs following Make a Remote
Procedure Call Allowing Asynchronous Responses.

R.13.02.
02

Platform A SHALL use "set-charging-profile-on-evses" as
the operation name for Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.13.02.
03

Platform A SHALL use a
SetChargingProfileOnEvsesRequest in the payload field
of the request body for Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.13.02.
04

Party Y cannot fulfill the request from Party X
because of the state of one or more of the
EVSEs

Platform B SHALL respond to Platform A’s request with
ACCEPTED in the data field of the OcpiResponse in the
response body. Platform B SHALL then send an
asynchronous response with the result_type field of the
AsyncResponse set to REJECTED and the error field of the
AsyncResponse set to an appropriate RegulationError
value.

R.13.02.
05

Party X MUST provide a start_date_time in the Charging
Profile when setting a Charging Profile with this use case.
This is because there is no Charging Session context
relative to which time cutoffs can be interpreted.

R.13.02.
06

Party Y is willing and able to apply the
Charging Profile requested by Party X.

Party Y SHOULD make sure that the total combined
energy delivery of all EVSEs mentioned in Party X’s
requested does not exceed the limit of the applicable
ChargingProfilePeriod at any time.

224

ID Precondition Requirement

R.13.02.
07

Party Y applied the Charging Profile to the
EVSEs as requested by Party X

Platform B SHALL send an asynchronous response with
the result_type field of the AsyncResponse set to
SUCCESS and the error and payload fields of the
AsyncResponse both left unset.

R.13.02.
08

Party Y applied the Charging Profile to the
EVSEs as requested by Party X and Party X is
subscribed to Party Y’s Power Regulation.

Party Y SHOULD issue Meter Sample objects to Party X so
that Party X can track the execution of the Charging
Profile.

R.13.02.
09

The numberPhases and phaseToUse fields SHALL be unset in
all ChargingProfilePeriod objects in the charging profile
in the payload of Platform A’s request.

NOTE

R.13.02.08 is rather vague in that it does not specify exactly which measurands Party Y should share
with Party X, and in which units and at what times it should do so. This is deliberate; there is little
certainty at the time of writing on how this monitoring will work exactly and how much freedom
Party Y will have to modify the way it happens. Therefore OCPI leaves this open for the parties to
agree outside of the protocol messages.

13.5.2. UC: 13.03 - Set a Charging Profile on a Charging Session

1 Objective(s) Party Y applies a Charging Profile to a Charging Session as instructed by Party X

2 Description An asynchronous remote procedure call is made by Party X to Party Y. In the request Party
X sends the Charging Profile that they wish to apply and the Charging Session to which
they wish it to be applied. In the response Party Y sends a confirmation or a rejection of
the Charging Profile application.

3 Actors eMSP, SCSP, CPO

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains the Charging Profile and the ID of the Charging
Session to apply it to.
2. Party Y decides if it accepts this Charging Profile for application to these EVSEs.
3. If Party Y accepts, it applies the Charging Profile to these EVSEs and informs Party X that
it was applied.
4. If Party Y does not accept, it informs Party X that the Charging Profile is not applied.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Power Regulation to Party X on Platform A.

225

6 Postconditions One of these two:

* Party X knows Party Y rejected their attempt to apply a Charging Profile to one of Party
Y’s Sessions; or

* Party Y applied the Charging Profile to the Charging Session mentioned in Party X’s
request. Also Party X knows that their request was turned into action and that they can
expect to receive Meter Samples about the realised energy consumption in that Charging
Session.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

Receiver
eMSP or SCSP
Party ID NLPTX

CPO
Sender

Party ID BEPTY

First, the Session starts and the Parties learn about it

Session started! Session ID = 15

Calculate Charging Profile

POST /ocpi/from/NLPTX/to/BEPTY/meterreadings/set-charging-profile-on-session
+ Session ID 15
+ calculated charging profile

HTTP 200 OK
status ACCEPTED

Sets Charging Profile on Charging Station
e.g. with OCPP's SetChargingProfile request
and obtains confirmation

POST /ocpi/from/BEPTY/to/NLPTX/async-responses/<callback ID>
+ result type SUCCESS

Figure 53. Sequence Diagram: Set a Charging Profile on a Charging Session

SCSP
Receiver

Party ID LUPTZ

Receiver and Sender
eMSP

Party ID NLPTX

CPO
Sender

Party ID BEPTY

First, the Session starts and the Parties learn about it

Session started! Session ID = 15

Session started! Session ID = 15

Calculate ChargingProfile

POST /ocpi/from/LUPTZ/to/NLPTX/meterreadings/set-charging-profile-on-session
+ Session ID 15
+ calculated charging profile

POST /ocpi/from/NLPTX/to/BEPTY/meterreadings/set-charging-profile-on-session
+ Session ID 15
+ calculated charging profile

HTTP 200 OK
status ACCEPTED

HTTP 200 OK
status ACCEPTED

Sets Charging Profile on Charging Station
and obtains confirmation

POST /ocpi/from/BEPTY/to/NLPTX/async-responses/<callback ID>
+ result type SUCCESS

POST /ocpi/from/NLPTX/to/LUPTZ/async-responses/<callback ID>
+ result type SUCCESS

Figure 54. Sequence Diagram specifically for the topology where eMSP delegates Smart Charging to an SCSP.

226

Table 52. UC: 13.03 Requirements

ID Precondition Requirement

R.13.03.
01

Platform A SHALL make the request to set a Charging
Profile on a Charging Session following Make a Remote
Procedure Call Allowing Asynchronous Responses.

R.13.03.
02

Platform A SHALL use "set-charging-profile-on-session"
as the operation name for Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.13.03.
03

Platform A SHALL use a
SetChargingProfileOnSessionRequest in the payload field
of the request body for Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.13.03.
04

Party Y cannot fulfill the request from Party X
because of the state of the device that the
Session is happening on.

Platform B SHALL respond to Platform A’s request with
ACCEPTED in the data field of the OcpiResponse in the
response body. Platform B SHALL then send an
asynchronous response with the result_type field of the
AsyncResponse set to REJECTED and the error field of the
AsyncResponse set to an appropriate RegulationError
value.

R.13.03.
05

Party Y is willing and able to apply the
Charging Profile requested by Party X.

Party Y SHOULD make sure that the rate of energy
delivery in the Charging Session mentioned in Party X’s
requested does not exceed the limit of the applicable
ChargingProfilePeriod at any time.

R.13.03.
06

Party Y applied the Charging Profile to the
Charging Session as requested by Party X

Platform B SHALL send an asynchronous response with
the result_type field of the AsyncResponse set to
SUCCESS and the error and payload fields of the
AsyncResponse both left unset.

R.13.03.
07

Party Y applied the Charging Profile to the
Charging Session as requested by Party X and
Party X is subscribed to Party Y’s Power
Regulation.

Party Y SHOULD issue Meter Sample objects to Party X so
that Party X can track the execution of the Charging
Profile.

NOTE

R.13.03.07 is rather vague in that it does not specify exactly which measurands Party Y should share
with Party X, and in which units and at what times it should do so. This is deliberate; there is little
certainty at the time of writing on how this monitoring will work exactly and how much freedom
Party Y will have to modify the way it happens. Therefore OCPI leaves this open for the parties to
agree outside of the protocol messages.

13.5.3. UC: 13.04 - Set Default Charging Profile

1 Objective(s) Party Y applies a Charging Profile sent by Party X to Charging Sessions that are newly
started on a certain subset of Party Y’s EVSEs.

227

2 Description An asynchronous remote procedure call is made by Party X to Party Y. In the request Party
X sends the Charging Profile that they wish to apply and the EVSEs to which they wish it to
be applied for newly starting Charging Sessions. In the response Party Y sends a
confirmation or a rejection of the Charging Profile application.

3 Actors eMSP, SCSP, CPO

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains the Charging Profile and the IDs of the EVSEs to
apply it to.
2. Party Y decides if it accepts this Charging Profile for application to new Charging
Sessions on these EVSEs.
3. Party Y asynchronously informs Party X if the Charging Profile was applied as requested
or not.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Power Regulation to Party X on Platform A.

6 Postconditions One of these two:

* Party X knows Party Y rejected their attempt to apply a Charging Profile to newly starting
Charging Sessions on one or more of Party Y’s EVSEs

* Party Y stored the Charging Profile and will apply it to newly starting Charging Sessions.
Also Party X knows that their request was turned into action and that they can expect to
receive Meter Samples about the realised energy consumption in Charging Sessions that
are started on the EVSEs that Party X listed in the requested.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s) Despite the naming, CPOs are not required to implement this use case by sending the
profile given by Party X to the charging station as an OCPP TxDefaultProfile. CPOs are
free to set the TxDefaultProfile to a different profile that assures safety of the electrical
circuit. CPOs that do so can still implement OCPI’s "Set Default Charging Profile" use case
by sending a TxProfile to the Charging Station once the CPO’s Charging Station
Management System has learned about the Charging Session and has done additional
checks.

228

Receiver
SCSP

Party ID NLPTX

CPO
Sender

Party ID BEPTY

First, NLPTX learns about BEPTY's Locations

subscribe to BEPTY's Locations

replicate Locations; let's as an example say that
these include EVSEs with IDs 12, 34 and 56.

Calculate default Charging Profile

POST /ocpi/from/NLPTX/to/BEPTY/meterreadings/set-default-charging-profile
+ Charging Profile
+ evses = [12, 34, 56]

HTTP 200 OK
status ACCEPTED

Sets Charging Profile on Charging Stations
and obtains confirmation

POST /ocpi/from/BEPTY/to/NLPTX/async-responses/<callback ID>
+ result type SUCCESS

Figure 55. Sequence Diagram: Set Default Charging Profile

Table 53. UC: 13.04 Requirements

ID Precondition Requirement

R.13.04.
01

Platform A SHALL make the request to apply a default
Charging Profile to one or more EVSEs following Make a
Remote Procedure Call Allowing Asynchronous
Responses.

R.13.04.
02

Platform A SHALL use "set-default-charging-profile" the
operation name for Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.13.04.
03

Platform A SHALL use a
SetChargingProfileOnEvsesRequest in the payload field
of the request body for Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.13.04.
04

Party Y cannot fulfill the request from Party X
because of the state of one or more of the
EVSEs

Platform B SHALL respond to Platform A’s request with
ACCEPTED in the data field of the OcpiResponse in the
response body. Platform B SHALL then send an
asynchronous response with the result_type field of the
AsyncResponse set to REJECTED and the error field of the
AsyncResponse set to an appropriate RegulationError
value.

R.13.04.
05

Party Y is willing and able to apply the
Charging Profile requested by Party X.

Whenever a Charging Session is started on an EVSE
mentioned in the request, Party Y SHOULD make sure
that the power with which the EV is charging in that
session does not exceed the limit of the applicable
ChargingProfilePeriod at any time.

229

ID Precondition Requirement

R.13.04.
06

Party Y applied the default Charging Profile to
the EVSEs as requested by Party X

Platform B SHALL send an asynchronous response with
the result_type field of the AsyncResponse set to
SUCCESS and the error and payload fields of the
AsyncResponse both left unset.

R.13.04.
07

Party Y applied the Charging Profile to the
EVSEs as requested by Party X and Party X is
subscribed to Party Y’s Power Regulation.

Party Y SHOULD issue Meter Sample objects to Party X so
that Party X can track the execution of the Charging
Profile.

13.5.4. UC: 13.05 - Get Active Charging Profile

1 Objective(s) Party X learns from Party Y how Party Y plans to execute a Charging Profile that was
previously set by Party X.

2 Description An asynchronous remote procedure call is made by Party X to Party Y. In the request Party
X sends the ID of the Charging Profile that they are inquiring about. In the response Party
Y sends a confirmation or a rejection of the request. If the request is accepted, Party Y
then sends the Active Charging Profile to Party X in the asynchronous response.

3 Actors eMSP, SCSP, CPO

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains the ID of the Charging Profile that Party X wants to
receive the Active Charging Profile for.
2. Party Y decides if it accepts this request for an Active Charging Profile.
3. If Party Y accepts, it gathers the information comprising the Active Chrging Profile and
sends it to Party X.
4. If Party Y does not accept, it informs Party X that it will not give Party X the Active
Charging Profile.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Power Regulation to Party X on Platform A.
Party X previously set a Charging Profile on Party Y’s systems using Set a Charging Profile
on a Charging Session or Set a Charging Profile on a Grouping of EVSEs.

6 Postconditions One of these two:

* Party X knows Party Y rejected their request for an Active Charging Profile; or

* Party X knows the Active Chraging Profile that Party Y is using.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

230

Receiver
eMSP or SCSP
Party ID ITPTX

Sender
CPO or eMSP
Party ID ITPTY

ITPTX previously set a Charging Profile with ID ABC

POST /ocpi/from/ITPTX/to/ITPTY/meterreadings/get-active-charging-profile
+ charging profile ID ABC

HTTP 200 OK
+ status ACCEPTED

Obtains active Charging Profile for the Charging Station,
possibly by communicating with the Charging Station
e.g. using OCPP's GetCompositeSchedule request

POST /ocpi/from/ITPTY/to/ITPTX/async-responses/<callback ID>
+ result type SUCCESS
+ active charging profile

Figure 56. Sequence Diagram: Get Active Charging Profile

Table 54. UC: 13.05 Requirements

ID Precondition Requirement

R.13.05.
01

Platform A SHALL make the request to get an Active
Charging Profile following Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.13.05.
02

Platform A SHALL use "get-active-charging-profile" as the
operation name for Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.13.05.
03

Platform A SHALL use a
SetChargingProfileOnSessionRequest in the payload field
of the request body for Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.13.05.
04

Party Y cannot fulfill the request from Party X
because of the state of one or more of the
devices that the Charging Profile is executed
on.

Platform B SHALL respond to Platform A’s request with
ACCEPTED in the data field of the OcpiResponse in the
response body. Platform B SHALL then send an
asynchronous response with the result_type field of the
AsyncResponse set to REJECTED and the error field of the
AsyncResponse set to an appropriate RegulationError
value.

R.13.05.
05

Party Y is willing and able to provide the Active
Charging Profile requested by Party X.

Platform B SHALL send an asynchronous response with
the result_type field of the AsyncResponse set to
SUCCESS and the error field of the AsyncResponse left
unset and the payload field of the AsyncResponse set to a
ActiveChargingProfile object that fulfills Party X’s request.
If there is no longer any Charging Profile active, the
ActiveChargingProfile SHALL reflect this by showing the
maximum charging capacity of the EVSE.

NOTE

When choosing the duration value in the GetActiveChargingProfile request object, Party X has to
balance the duration between maximizing the information gained and the data usage and
computation to execute on the request. Consider that asking for longer duration than necessary

231

might result in additional data costs, while its added value diminishes with every change in the
schedule.

13.5.5. UC: 13.06 - Clear Charging Profile

1 Objective(s) Party X requests Party Y to no longer take into account a Charging Profile that Party X
previously requested Party Y to apply.

2 Description An asynchronous remote procedure call is made by Party X to Party Y. In the request Party
X sends the ID of the Charging Profile that they would like to clear. In the response Party Y
sends a confirmation or a rejection of the request. If the request is accepted, Party Y will
adjust the rate of energy delivery on their infrastructure so that the cleared Charging
Profile is no longer applied.

3 Actors eMSP, SCSP, CPO

4 Flow 1. Platform A makes a request on behalf of Party X to Platform B receiving the request on
behalf of Party Y. This request contains the ID of the Charging Profile that Party X wants to
clear.
2. Party Y decides if it accepts this request to clear a Charging Profile.
3. If Party Y accepts, it clears the Charging Profile and asynchronously responds with a
confirmation to Party X.
4. If Party Y does not accept, it informs Party X that it will not clear the Charging Profile.

5 Preconditions Both platforms have set up an OCPI connection with Handshake OCPI Connection
Parameters.
Platform B serves Party Y to Party X.
Platform A serves Party X to Party Y.
Platform B serves Party Y’s Power Regulation to Party X on Platform A.
Party X previously set a Charging Profile on Party Y’s systems using Set a Charging Profile
on a Charging Session or Set a Charging Profile on a Grouping of EVSEs.

6 Postconditions One of these two:

* Party X knows Party Y rejected their request to clear the Charging Profile; or

* Party Y stopped applying the Charging Profile and Party X is aware of this.

7 Error handling Error reporting by Platform B follows the generic mechanism described in Make a Request
to a Party on behalf of a Party.

8 Remark(s)

232

Receiver
eMSP or SCSP

Party ID CAPTX

Sender
CPO or eMSP

Party ID CAPTY

CAPTX previously set a Charging Profile with ID 123

POST /ocpi/from/CAPTX/to/CAPTY/meterreadings/clear-charging-profile
+ charging profile ID 123

HTTP 200 OK
+ status ACCEPTED

clears Charging Profile from Charging Station
and obtains confirmation

POST /ocpi/from/CAPTY/to/CAPTX/async-responses/<callback ID>
+ result type SUCCESS

Figure 57. Sequence Diagram: Clear Charging Profile

Table 55. UC: 13.06 Requirements

ID Precondition Requirement

R.13.06.
01

Platform A SHALL make the request to clear a Charging
Profile following Make a Remote Procedure Call Allowing
Asynchronous Responses.

R.13.06.
02

Platform A SHALL use "clear-charging-profile" as the
operation name for Make a Remote Procedure Call
Allowing Asynchronous Responses.

R.13.06.
03

Platform A SHALL use a ClearChargingProfileRequest in
the payload field of the request body for Make a Remote
Procedure Call Allowing Asynchronous Responses.

R.13.06.
04

Party Y cannot fulfill the request from Party X
because of the state of one or more of the
devices that the Charging Profile is executed
on.

Platform B SHALL respond to Platform A’s request with
ACCEPTED in the data field of the OcpiResponse in the
response body. Platform B SHALL then send an
asynchronous response with the result_type field of the
AsyncResponse set to REJECTED and the error field of the
AsyncResponse set to an appropriate RegulationError
value.

R.13.06.
05

Party Y is willing and able to clear the Charging
Profile requested by Party X.

Platform B SHALL send an asynchronous response with
the result_type field of the AsyncResponse set to
SUCCESS and the error and payload fields of the
AsyncResponse left unset.

13.6. Data types

13.6.1. ActiveChargingProfile class

233

Property Type Card. Description

start_date_time DateTime 1 Date and time at which the Charge Point has calculated this
ActiveChargingProfile. All time measurements within the profile
are relative to this timestamp.

charging_profile ChargingProfile 1 Charging Profile structure defines a list of charging periods.

13.6.2. ChargingRateUnit enum

Unit in which a Charging Profile is defined.

Value Description

W Watts (power)
This is the TOTAL allowed charging power. If used for AC Charging, the phase current
should be calculated via: Current per phase = Power / (Line Voltage * Number of Phases).
The "Line Voltage" used in the calculation is the Line to Neutral Voltage (VLN). In Europe
and Asia VLN is typically 220V or 230V and the corresponding Line to Line Voltage (VLL) is
380V and 400V. The "Number of Phases" is the numberPhases from the
ChargingProfilePeriod. It is usually more convenient to use this for DC charging. Note
that if numberPhases in a ChargingProfilePeriod is absent, 3 SHALL be assumed.

A Amperes (current)
The amount of Ampere per phase, not the sum of all phases. It is usually more
convenient to use this for AC charging.

13.6.3. Unit OpenEnum

Unit in which a MeterReading is reported.

Value Description

A Amperes

Hz Hertz

PERCENT Percentage

W Watts

13.6.4. ChargingProfile class

A Charging Profile consists of a list of charging profile periods.

Property Type Card. Description

id CiAsciiString[1..36] 1 An ID of the Charging Profile that is requested to
be set. This serves to refer to the Profile later to
clear it or to inquire about the Active Charging
Profile.

234

Property Type Card. Description

start_date_time DateTime ? Starting point of an absolute profile. If absent the
profile will be relative to start of charging.

duration int ? Duration of the Charging Profile in seconds. If the
duration is left empty, the last period will
continue indefinitely or until end of the
transaction in case start_date_time is absent.

charging_rate_unit ChargingRateUnit 1 The unit of measure.

min_charging_rate number ? Minimum charging rate supported by the EV. The
unit of measure is defined by the
chargingRateUnit. This parameter is intended to
be used by a local smart charging algorithm to
optimize the power allocation for in the case a
charging process is inefficient at lower charging
rates. Accepts at most one digit fraction (e.g. 8.1)

charging_profile_period ChargingProfilePeriod * List of ChargingProfilePeriod elements defining
maximum power or current usage over time.

13.6.5. ChargingProfilePeriod class

The ChargingProfilePeriod data structure defines a time period in a Charging Profile, as used in: ChargingProfile

Property Type Card. Description

start_period int 1 Start of the period, in seconds from the start of profile. The value of
StartPeriod also defines the stop time of the previous period.

limit number 1 Charging rate limit during the profile period, in the applicable
chargingRateUnit, for example in Amperes (A) or Watts (W). Accepts at
most one digit fraction (e.g. 8.1).

numberPhases number ? The number of AC phases that the CPO can use for charging. For
profiles applying to DC charging stations, no value should be given. For
AC charging stations, the CPO should assume a default value of 3 when
using a ChargingProfilePeriod in which this value is not given.

phaseToUse number ? Which AC phase the CPO should use to charge, if numberPhases is set
to 1. The only possible values are 1, 2 and 3.

13.6.6. ComponentLevel enum

Value Description

EV The meter reading applies to the Electric Vehicle (EV) connected to the EVSE.

EVSE The meter reading applies to a single EVSE.

GROUP The meter reading applies to a grouping of EVSEs.

235

13.6.7. ComponentLocation OpenEnum

Describes at which point in the power circuit, relative to the component, a MeterReading was obtained.

Value Description

INLET The meter reading was obtained at the inlet, that is, the meter reading describes the
power that is taken from the power supply by the component.

OUTLET The meter reading was obtained at the outlet, that is, the meter reading describes the
power being delivered by the component.

13.6.8. GetActiveChargingProfileRequest class

Parameters for a Get Active Charging Profile request.

Parameter Type Card. Description

charging_profile_id CiAsciiString[
1..36]

1 The unique ID that identifies the Charging Profile for which an Active
Charging Profile is requested to the CPO.

duration int 1 Length of the requested ActiveChargingProfile in seconds.

13.6.9. Measurand OpenEnum

That what is measured in a MeterReading.

Value Description

CURRENT Electric current, typically reported in Amperes.

POWER The electric power currently being consumed, typically reported in Watts.

FREQUENCY The frequency of the AC current alternation.

SOC The state of charge, typically reported as a percentage.

13.6.10. MeterReading class

A record of a measurement of a quantity relevant to regulation of charging power.

Property Type Card. Description

value number 1 The measured value, in the unit given by the unit field.

measurand Measurand 1 The quantity that was measured.

unit Unit 1 The unit in which this meter reading is given.

component_level ComponentL
evel

1 The level of grouping for which the meter reading is given.

location ComponentL
ocation

1 At which point in the energy flow relative to the component the meter
reading was obtained.

236

Property Type Card. Description

phase Phase ? Which phase the reading applies to. When this field is not given, the
measured value is interpreted as an overall value.

13.6.11. MeterSample class

A record of one or more measurements that are made at the same time.

Transferring MeterSample objects is the main mechanism by which OCPI allows Parties who control charging power
at other Parties' infrastructure to see what the impact of their control is.

Property Type Card. Description

timestamp DateTime 1 The time at which the measurements were taken

evse_id CiAsciiString[
1..36]

? The UID of the EVSE to which these measurements apply, if any.

session_id CiAsciiString[
1..36]

? The ID of the Charging Session to which these measurements apply, if
any.

charging_profile_id CiAsciiString[
1..36]

? The Charging Profile for which these measurements are sent.

readings MeterReadin
g

+ The measurements

13.6.12. Phase enum

Indicates to which phase or phases of the power supply a meter reading applies.

Value Description

L1 Measured on L1

L2 Measured on L2

L3 Measured on L3

N Measured on Neutral

L1-N Measured on L1 with respect to Neutral conductor

L2-N Measured on L2 with respect to Neutral conductor

L3-N Measured on L3 with respect to Neutral conductor

L1-L2 Measured between L1 and L2

L2-L3 Measured between L2 and L3

L3-L1 Measured between L3 and L1

237

13.6.13. RegulationError enum

An enumeration to report reasons for failure to apply a Charging Profile.

Value Description

TOO_OFTEN The Charging Profile request was rejected by the CPO because requests are sent more
often than the CPO allows.

UNKNOWN_SESSION The Session in the request command is not known by this CPO.

UNKNOWN_EVSE An EVSE mentioned in the request is not known by this CPO.

13.6.14. SetChargingProfileOnEvsesRequest class

Property Type Card. Description

charging_profile ChargingPro
file

? The Charging Profile to apply to the group of EVSEs. If this field is unset,
it indicates that a previously set Charging Profile is to be removed.

evses CiAsciiString[
1..36]

+ UIDs of the EVSEs to apply the Charging Profile to.

13.6.15. SetChargingProfileOnSessionRequest class

Property Type Card. Description

charging_profile ChargingPro
file

1 The Charging Profile to apply to the group of EVSEs

session_id CiAsciiString[
1..36]

1 ID of the Charging Session to apply the Charging Profile to

13.6.16. ClearChargingProfileRequest class

Property Type Card. Description

charging_profile_id CiAsciiString[
1..36]

yes The unique ID that identifies the Charging Profile that is to be cleared.

238

	OCPI 3.0-2: Functional Use Cases
	Table of Contents
	Introduction
	General
	Terminology
	References
	Use Case Template
	UC: F01 - Example Use Case

	Fundamental data type definitions
	class
	enum
	OpenEnum type
	UnicodeString type
	AsciiString type
	CiAsciiString type
	int type
	decimal type
	URL type
	PartyID type
	DateTime type
	DisplayText class

	1. Registration
	1.1. Use Cases
	1.1.1. UC: 01.01 - Initial credentials exchange (manual)
	1.1.2. UC: 01.02 - Establish secure connection
	1.1.3. UC: 01.03 - Handshake OCPI connection parameters
	1.1.4. UC: 01.04 - Renew certificate
	1.1.5. UC: 01.05 - Terminate OCPI connection
	1.1.6. UC: 01.06 - Request supported OCPI versions

	1.2. Object types for Registration use cases
	1.2.1. ConnectionParametersRequest class
	1.2.2. ConnectionParametersResponse class
	1.2.3. CertificateRenewalRequest class
	1.2.4. OcpiVersions class
	1.2.5. OcpiVersion class
	1.2.6. RenewedCertificate class

	2. Request Addressing
	2.1. Note from the editor on changes from OCPI 2.2
	2.2. Introduction
	2.3. Use Cases
	2.3.1. UC: 02.01 - Request Parties served by Platform
	2.3.2. UC: 02.02 - Make a request on behalf of a Party to a Party on another Platform

	2.4. Object types for Request Addressing use cases
	2.4.1. BusinessDetails class
	2.4.2. Image class
	2.4.3. ImageCategory enum
	2.4.4. InterfaceRole enum
	2.4.5. ModuleID OpenEnum
	2.4.6. OcpiResponse class
	2.4.7. OCPI response status codes
	2.4.7.1. 1xxx: Success
	2.4.7.2. 2xxx: Client errors
	2.4.7.3. 3xxx: Server errors
	2.4.7.4. 4xxx: Hub errors
	2.4.7.5. 5xxx: Subscription errors
	2.4.7.6. 6xxx: Platform Issued Object update errors
	2.4.7.7. 7xxx: Remote Procedure Call errors

	2.4.8. PartyRole class
	2.4.9. PlatformParty class
	2.4.10. PlatformParties class
	2.4.11. PointOfContact class

	3. Party Issued Objects
	3.1. Introduction
	3.1.1. Why such an abstract replication system?
	3.1.1.1. A reusable system
	3.1.1.2. More reliable
	3.1.1.3. More frugal
	3.1.1.4. More interoperable
	3.1.1.5. More stable
	3.1.1.6. Traceability of charge authorization

	3.1.2. Implementing OCPI 3.0’s Party Issued Object pub-sub
	3.1.2.1. How to store subscriptions
	3.1.2.2. When and what to send
	3.1.2.3. Data storage on the producer side
	3.1.2.4. Data storage on the consumer side
	3.1.2.5. Optimizing throughput with many HTTP requests

	3.2. Use Cases
	3.2.1. UC: 03.01 - Subscribe to Party Issued Objects of a certain Module of a certain Party
	3.2.2. UC: 03.02 - Send a full update of a Party Issued Object to a Subscribed Platform
	3.2.3. UC: 03.03 - Retry an update of a Party Issued Object to a Subscribed Platform
	3.2.4. UC: 03.04 - Cancel a Subscription as the Platform receiving data
	3.2.5. UC: 03.05 - Cancel a Subscription as the Platform sending data
	3.2.6. UC: 03.06 - Check subscription state on sender side as the platform receiving data
	3.2.7. UC: 03.07 - Renegotiate Subscription Parameters as the Platform receiving data
	3.2.8. UC: 03.08 - Renegotiate Subscription Parameters as the Platform sending data
	3.2.9. UC: 03.09 - Request immediate retry of all pending updates for a Subscription
	3.2.10. UC: 03.10 - Request full update of a certain Party Issued Object
	3.2.11. UC: 03.11 - Subscribe to Party Issued Objects of a certain Module of a certain Party as a Hub
	3.2.12. UC: 03.12 - Subscribe to Party Issued Objects of a certain Module of a Hub
	3.2.13. UC: 03.13 - Subscribe to Party Issued Objects of a certain Module of a Hub as a Hub

	3.3. Object types for Party Issued Objects use cases
	3.3.1. PartyIssuedObjectReference class
	3.3.2. PartyIssuedObjectUpdate class
	3.3.3. SubscriptionCancellation class
	3.3.4. SubscriptionCancellationReason enum
	3.3.5. SubscriptionParameterProposal class
	3.3.6. SubscriptionRenegotiationStatus enum
	3.3.7. SubscriptionRequest class
	3.3.8. SubscriptionResponse class
	3.3.9. SubscriptionState class

	4. Remote Procedure Calls
	4.1. Introduction
	4.2. Use Cases
	4.2.1. UC: 04.01 - Make a Remote Procedure Call on behalf of a Party to another Party on another Platform
	4.2.2. UC: 04.02 - Let a Hub find a receiver Party for a Remote Procedure Call
	4.2.3. UC: 04.03 - Make a Remote Procedure Call Allowing Asynchronous Responses

	4.3. Object types for Remote Procedure Calls Use Cases
	4.3.1. AsyncRequest class
	4.3.2. AsyncResponse class
	4.3.3. AsyncResultType enum
	4.3.4. ImmediateResponseToAsyncRequest enum

	5. Locations
	5.1. Changes from OCPI 2.2.1
	5.2. Replicating Location objects
	5.2.1. UC: 05.01 - Replicate Location objects from one Party to another Party
	5.2.2. Example Location objects
	5.2.2.1. Example public Location
	5.2.2.2. Example destination Location
	5.2.2.3. Example destination Locations not published, but paid guest usage possible
	5.2.2.4. Example Location with limited visibility
	5.2.2.5. Example private Charging Station with eMSP app control
	5.2.2.6. Example Charging Station in a parking garage with opening hours

	5.3. Remote Procedure Calls on Location objects
	5.3.1. UC: 05.02 - Reserve an EVSE at a Location
	5.3.2. UC: 05.03 - Cancel a Reservation as an eMSP
	5.3.3. UC: 05.04 - Cancel a Reservation as a CPO
	5.3.4. UC: 05.06 - Unlock a Connector
	5.3.5. UC: 05.07 - Reset an EVSE

	5.4. Object type definitions
	5.4.1. AdditionalGeoLocation class
	5.4.2. Address class
	5.4.3. CancelReservationRequest class
	5.4.4. Capability enum
	5.4.5. ChargingStation class
	5.4.6. ChargingStationCommandError class
	5.4.7. ChargingStationCommandStatus enum
	5.4.8. Connector class
	5.4.9. ConnectorCapability OpenEnum
	5.4.10. ConnectorFormat enum
	5.4.11. ConnectorType OpenEnum
	5.4.12. Common EV Charging Connector Types
	5.4.13. Domestic and Industrial Connector Types
	5.4.14. Legacy and Novelty Connector Types
	5.4.15. EnergyMix class
	5.4.15.1. Examples

	5.4.16. EnergySource class
	5.4.17. EnergySourceCategory enum
	5.4.18. EnvironmentalImpact class
	5.4.19. EnvironmentalImpactCategory enum
	5.4.20. EVSE class
	5.4.21. EvsePosition enum
	5.4.22. ExceptionalPeriod class
	5.4.23. Facility enum
	5.4.24. GeoLocation class
	5.4.25. Hours class
	5.4.25.1. Example: 24/7 open with exceptional closing.
	5.4.25.2. Example: Opening Hours with exceptional closing.
	5.4.25.3. Example: Opening Hours with exceptional opening.

	5.4.26. Parking class
	5.4.27. ParkingDirection enum
	5.4.28. ParkingRestriction class
	5.4.29. ParkingRestrictionGroup OpenEnum
	5.4.30. ParkingType enum
	5.4.31. Location class
	5.4.32. LocationMaxPower class
	5.4.33. PowerType enum
	5.4.34. PresenceStatus enum
	5.4.35. PublishTokenType class
	5.4.36. RegularHours class
	5.4.36.1. Handling midnight
	5.4.36.2. Example with exceptional opening hours

	5.4.37. ReservationStatus enum
	5.4.38. ReserveNowRequest class
	5.4.39. ReservationError class
	5.4.40. ResetEvseRequest class
	5.4.41. LocationService enum
	5.4.42. Status enum
	5.4.43. StatusSchedule class
	5.4.44. UnlockConnectorRequest class
	5.4.45. VehicleType enum

	6. EVSE Status
	6.1. Replicating EVSE Status objects
	6.1.1. UC: 06.01 - Replicate EVSE status objects from one Party to another Party

	6.2. Remote Procedure Calls on EVSE Status objects
	6.3. Object type definitions
	6.3.1. EvseStatus class

	7. Sessions
	7.1. Changes from OCPI 2.2.1
	7.2. Replicating Session objects
	7.2.1. UC: 07.01 - Replicate Session objects from one Party to another Party

	7.3. Remote Procedure Calls on Session Objects
	7.3.1. UC: 07.02 - Start a Session
	7.3.2. UC: 07.03 - Stop a Session
	7.3.3. UC: 07.04 - Change Charging Preferences
	7.3.4. UC: 07.05 - Notify Session receiver of the active Charging Profile
	7.3.5. UC: 07.06 - Send Message for Driver About Session to eMSP
	7.3.6. UC: 07.07 - Send Message for Driver About Session to CPO

	7.4. Data types
	7.4.1. ChargingPreferences class
	7.4.2. ChargingPreferencesResponse enum
	7.4.3. NotifyActiveChargingProfileRequest class
	7.4.4. SendDriverMessageRequest class
	7.4.5. Session class
	7.4.5.1. Examples

	7.4.6. ProfileType enum
	7.4.7. SessionCommandError class
	7.4.8. SessionCommandStatus enum
	7.4.9. SessionConnector class
	7.4.10. SessionStatus enum
	7.4.11. StartSession class
	7.4.12. StopSessionRequest class

	8. CDRs
	8.1. Introduction
	8.1.1. Credit CDRs
	8.1.2. Replication model
	8.1.3. Changes from OCPI 2.2.1

	8.2. Replicating CDR objects
	8.2.1. UC: 08.01 - Replicate CDR objects from one Party to another Party
	8.2.2. UC: 08.02 - Send a Credit CDR
	8.2.3. Example of a CDR

	8.3. Remote Procedure Calls on CDR Objects
	8.3.1. UC: 08.03 - Dispute a CDR

	8.4. Other CDRs use cases
	8.4.1. UC: 08.04 - Check CDR price

	8.5. Data types
	8.5.1. AuthMethod enum
	8.5.2. CDR class
	8.5.3. CdrConnector class
	8.5.4. CdrDimension class
	8.5.5. CdrDimensionType enum
	8.5.6. CdrLocation class
	8.5.7. CdrToken class
	8.5.8. ChargingPeriod class
	8.5.9. DisputeCdrRequest class
	8.5.10. DisputeCdrResponse class
	8.5.11. SignedData class
	8.5.12. SignedValue class

	9. Tariffs
	9.1. Changes from OCPI 2.2.1
	9.2. A note on "Parking time", "Loitering fees", "Idle penalties", et cetera
	9.3. Replicating Tariff objects
	9.3.1. UC: 09.01 - Replicate Tariff objects from one Party to another Party
	9.3.2. Examples of Tariff objects
	9.3.2.1. Simple Tariff example € 0.25 per kWh
	9.3.2.2. Simple Tariff example with British Columbia taxes
	9.3.2.3. Tariff example € 0.25 per kWh + start fee
	9.3.2.4. Tariff example € 0.25 per kWh + minimum price
	9.3.2.5. Tariff example € 0.25 per kWh + loitering fee + start fee
	9.3.2.6. Tariff example € 0.25 per kWh + start fee + max price
	9.3.2.7. Simple Tariff example € 2 per hour
	9.3.2.8. Simple Tariff example € 3 per hour, € 5 per hour loitering
	9.3.2.9. Simple Tariff example with multiple languages
	9.3.2.10. Tariff example not possible with OCPI: differentiation by payment method
	9.3.2.11. Simple Tariff example with alternative URL
	9.3.2.12. Complex Tariff example
	9.3.2.13. Free of Charge Tariff example
	9.3.2.14. First hour free energy example
	9.3.2.15. Tariff example with reservation price
	9.3.2.16. Tariff example with reservation price and fee
	9.3.2.17. Tariff example with reservation price and expire fee
	9.3.2.18. Tariff example with reservation time and expire time

	9.4. Remote Procedure Calls on Tariff objects
	9.5. Object type definitions
	9.5.1. DayOfWeek enum
	9.5.2. Price class
	9.5.3. PriceComponent class
	9.5.4. ReservationRestrictionType enum
	9.5.5. Tariff class
	9.5.6. TariffElement class
	9.5.7. TariffDimensionType enum
	9.5.8. TariffRestrictions class
	9.5.8.1. Example: Tariff with max_power Tariff Restrictions
	9.5.8.2. Example: Tariff with max_duration Tariff Restrictions

	9.5.9. TaxAmount class
	9.5.10. TaxPercentage class

	10. Tariff Associations
	10.1. Changes from OCPI 2.2.1
	10.2. Replicating Tariff Associations objects
	10.2.1. UC: 10.01 - Replicate Tariff Association objects from one Party to another Party

	10.3. Remote Procedure Calls on Tariff Association objects
	10.4. Other Tariff Associations use cases
	10.4.1. UC: 10.02 - Cancel a Tariff Association

	10.5. Object type definitions
	10.5.1. ConnectorReference class
	10.5.2. TariffAssociation class
	10.5.3. TariffAudience enum

	11. Tokens
	11.1. Changes from OCPI 2.2.1
	11.2. Replicating Token objects
	11.2.1. UC: 11.01 - Replicate Token objects from one Party to another Party
	11.2.2. Example token objects
	11.2.2.1. Example APP_USER token
	11.2.2.2. Example RFID token
	11.2.2.3. Example EMAID token

	11.3. Remote Procedure Calls on Token Objects
	11.3.1. UC: 11.02 - Ask for real-time charge authorization

	11.4. Object type definitions
	11.4.1. AllowedType enum
	11.4.2. AuthorizeRequest class
	11.4.3. AuthorizeResponse class
	11.4.4. EnergyContract class
	11.4.5. Token class
	11.4.6. TokenType OpenEnum
	11.4.7. WhitelistType enum

	12. Invoice Reconciliation
	12.1. Changes from OCPI 2.2.1
	12.2. High-level description
	12.3. Replicating Invoice Reconciliation Record objects
	12.3.1. UC: 12.01 - Replicate Invoice Reconciliation objects from one Party to another Party

	12.4. Remote Procedure Calls on Invoice Reconciliation Record objects
	12.5. Object type definitions
	12.5.1. InvoiceReconciliationRecord class

	13. Power Regulation
	13.1. A note for the reviewers
	13.2. Smart Charging Topologies
	13.2.1. The eMSP generates Charging Profiles.
	13.2.2. The eMSP delegated Smart Charging to SCSP.
	13.2.3. The CPO delegated Smart Charging to SCSP.

	13.3. Changes from OCPI 2.2.1
	13.4. Replicating MeterSample objects
	13.4.1. UC: 13.01 - Replicate MeterSample objects from one Party to another Party

	13.5. Remote Procedure Calls for Power Regulation
	13.5.1. UC: 13.02 - Set a Charging Profile on a grouping of EVSEs
	13.5.2. UC: 13.03 - Set a Charging Profile on a Charging Session
	13.5.3. UC: 13.04 - Set Default Charging Profile
	13.5.4. UC: 13.05 - Get Active Charging Profile
	13.5.5. UC: 13.06 - Clear Charging Profile

	13.6. Data types
	13.6.1. ActiveChargingProfile class
	13.6.2. ChargingRateUnit enum
	13.6.3. Unit OpenEnum
	13.6.4. ChargingProfile class
	13.6.5. ChargingProfilePeriod class
	13.6.6. ComponentLevel enum
	13.6.7. ComponentLocation OpenEnum
	13.6.8. GetActiveChargingProfileRequest class
	13.6.9. Measurand OpenEnum
	13.6.10. MeterReading class
	13.6.11. MeterSample class
	13.6.12. Phase enum
	13.6.13. RegulationError enum
	13.6.14. SetChargingProfileOnEvsesRequest class
	13.6.15. SetChargingProfileOnSessionRequest class
	13.6.16. ClearChargingProfileRequest class

