
OCPI 2.2
Open Charge Point Interface

document version 2.2-RC1, 04-02-2019

github.com/ocpi



Table of Contents

1. OCPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1.1. OCPI 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1.1.1. Editorial note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1.1.2. Changes/New functionality: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1.2. Introduction and background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

2. Terminology and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.1. Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.2. Provider and Operator abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.2.1. The Netherlands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.2.2. Germany. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.2.3. Austria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.2.4. France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.3. Charging topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.4. Variable names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2.5. Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

3. Transport and format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

3.1. JSON / HTTP implementation guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

3.1.1. Security and authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

3.1.2. Authorization header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

3.1.3. Pull and Push . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

3.1.4. Request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

3.1.4.1. GET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

3.1.4.2. PUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

3.1.4.3. PATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

3.1.5. Client owned object push . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

3.1.5.1. Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

3.1.6. Response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

3.1.6.1. Example: Version information response (list of objects) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

3.1.6.2. Example: Version details response (one object) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

3.1.6.3. Example: Tokens GET Response with one Token object. (CPO end-point) (one object) . . . . . . . . . . . . . . . . . .  11

3.1.6.4. Example: Tokens GET Response with list of Token objects. (eMSP end-point) (list of objects) . . . . . . . . . . . .  12

3.1.6.5. Example: Response with an error (contains no data field) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

3.1.7. Message Routing Headers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

3.1.7.1. Omitting from address in responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

3.1.7.2. Broadcast push . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

3.1.7.3. Open routing request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

3.1.7.4. Overview of required/optional routing headers for different scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

3.2. Unique message IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

3.3. Interface endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

3.4. Offline behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

4. Status codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

4.1. 1xxx: Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

4.2. 2xxx: Client errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

4.3. 3xxx: Server errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

4.4. 4xxx: Hub errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

5. Versions module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

5.1. Version information endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

5.1.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

5.1.2. Version class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

5.1.3. GET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

5.1.3.1. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

5.2. Version details endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22



5.2.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

5.2.2. Endpoint class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

5.2.3. InterfaceRole enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

5.2.4. ModuleID enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

5.2.5. VersionNumber enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

5.2.5.1. Custom Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

5.2.6. GET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

5.2.6.1. Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

6. Credentials module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

6.1. Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

6.1.1. Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

6.1.2. Updating to a newer version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

6.1.3. Changing endpoints for the current version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

6.1.4. Updating the credentials and resetting the credentials token. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

6.1.5. Errors during registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

6.1.6. Required endpoints not available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

6.2. Interfaces and endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

6.2.1. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

6.2.2. POST Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

6.2.3. PUT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

6.2.4. DELETE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

6.3. Object description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

6.3.1. Credentials object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

6.3.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

6.4. Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

6.4.1. CredentialsRole class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

6.4.2. Role enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

7. Locations module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

7.1. Flow and Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

7.2. Interfaces and endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

7.2.1. CPO Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

7.2.1.1. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

7.2.1.2. eMSP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

7.2.1.3. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

7.2.1.4. PUT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

7.2.1.5. PATCH Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

7.3. Object description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

7.3.1. Location Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

7.3.1.1. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

7.3.2. EVSE Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

7.3.3. Connector Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

7.4. Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

7.4.1. AdditionalGeoLocation class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

7.4.2. BusinessDetails class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

7.4.3. Capability enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

7.4.4. ConnectorFormat enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

7.4.5. ConnectorType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

7.4.6. EnergyMix class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

7.4.6.1. Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

7.4.7. EnergySource class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

7.4.8. EnergySourceCategory enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

7.4.9. EnvironmentalImpact class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

7.4.10. EnvironmentalImpactCategory enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

7.4.11. ExceptionalPeriod class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

7.4.12. Facility enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44



7.4.13. GeoLocation class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

7.4.14. Hours class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

7.4.15. Image class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

7.4.16. ImageCategory enum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

7.4.17. LocationType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

7.4.18. ParkingRestriction enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

7.4.19. PowerType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

7.4.20. RegularHours class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

7.4.20.1. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

7.4.21. Status enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48

7.4.22. StatusSchedule class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

8. Sessions module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

8.1. Flow and Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

8.1.1. Push model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

8.1.2. Pull model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

8.1.3. Set charging preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

8.2. Interfaces and endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

8.2.1. CPO Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

8.2.1.1. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

8.2.1.2. PUT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

8.2.1.3. eMSP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

8.2.1.4. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

8.2.1.5. PUT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

8.2.1.6. PATCH Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

8.3. Object description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54

8.3.1. Session Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54

8.3.1.1. Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54

8.3.2. ChargingPreferences Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55

8.4. Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

8.4.1. ChargingPreferencesResponse enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

8.4.2. ProfileType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

8.4.3. SessionStatus enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

9. CDRs module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

9.1. Flow and Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

9.1.1. Credit CDRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

9.1.2. Push model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

9.1.3. Pull model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

9.2. Interfaces and endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

9.2.1. CPO Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

9.2.1.1. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

9.2.2. eMSP Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59

9.2.2.1. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59

9.2.2.2. POST Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59

9.3. Object description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

9.3.1. CDR Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

9.3.1.1. Example of a CDR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

9.4. Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

9.4.1. AuthMethod enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

9.4.2. CdrDimension class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

9.4.3. CdrDimensionType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

9.4.4. CdrLocation class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

9.4.5. CdrToken class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

9.4.6. ChargingPeriod class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

10. Tariffs module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

10.1. Flow and Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65



10.1.1. Push model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

10.1.2. Pull model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

10.2. Interfaces and endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

10.2.1. CPO Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

10.2.1.1. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

10.2.2. eMSP Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

10.2.2.1. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

10.2.2.2. PUT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

10.2.2.3. PATCH Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68

10.2.2.4. DELETE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68

10.3. Object description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68

10.3.1. Tariff Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68

10.3.1.1. Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69

10.4. Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82

10.4.1. DayOfWeek enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82

10.4.2. PriceComponent class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

10.4.2.1. Examples tariff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

10.4.2.2. Example switch to different price: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

10.4.2.3. Example switching to free tariff element:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

10.4.3. ReservationRestrictionType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

10.4.4. TariffElement class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

10.4.5. TariffDimensionType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

10.4.6. TariffRestrictions class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

10.4.7. TariffType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

11. Tokens module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

11.1. Flow and Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

11.1.1. Push model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

11.1.2. Pull model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

11.1.3. Real-time authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

11.2. Interfaces and endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

11.2.1. CPO Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

11.2.1.1. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

11.2.1.2. PUT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

11.2.1.3. PATCH Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89

11.2.2. eMSP Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89

11.2.2.1. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89

11.2.2.2. POST Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

11.3. Object description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

11.3.1. AuthorizationInfo Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

11.3.2. Token Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

11.3.2.1. Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92

11.4. Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

11.4.1. Allowed enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

11.4.2. EnergyContract class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

11.4.3. LocationReferences class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

11.4.4. TokenType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

11.4.5. WhitelistType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94

12. Commands module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95

12.1. Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95

12.2. Interfaces and endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

12.2.1. CPO Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

12.2.1.1. POST Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

12.2.1.2. Request Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98

12.2.2. eMSP Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98

12.2.2.1. POST Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98



12.2.2.2. Request Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

12.3. Object description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

12.3.1. CancelReservation Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

12.3.2. CommandResponse Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

12.3.3. CommandResult Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

12.3.4. ReserveNow Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100

12.3.5. StartSession Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100

12.3.6. StopSession Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100

12.3.7. UnlockConnector Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100

12.4. Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

12.4.1. CommandResponseType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

12.4.2. CommandResultType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

12.4.3. CommandType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

13. ChargingProfiles module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

13.1. Use Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

13.2. Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

13.3. Interfaces and endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103

13.3.1. CPO Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103

13.3.1.1. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103

13.3.1.2. PUT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104

13.3.1.3. Request Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104

13.3.1.4. DELETE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105

13.3.2. eMSP Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105

13.3.2.1. POST Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

13.3.2.2. Request Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

13.3.2.3. Response Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

13.3.2.4. PUT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

13.3.2.5. Request Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

13.3.2.6. Response Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

13.4. Object description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

13.4.1. ChargingProfileResponse Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

13.4.2. CompositeProfileResult Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108

13.4.3. ChargingProfileResult Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108

13.4.4. ClearProfileResult Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108

13.4.5. SetChargingProfile Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108

13.5. Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108

13.6. ChargingRateUnit enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108

13.7. ChargingSchedule class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109

13.8. ChargingSchedulePeriod class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109

13.8.1. CompositeProfile class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109

13.8.2. ResponseType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109

13.8.3. ResultType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

14. HubClientInfo module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

14.1. Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

14.1.1. Another Party becomes CONNECTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

14.1.2. Another Party goes OFFLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

14.1.3. Another Party becomes PLANNED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

14.1.4. Another Party becomes SUSPENDED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

14.2. Still alive check. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

14.3. Flow and Life-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

14.4. Push model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112

14.5. Pull model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112

14.6. Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112

14.6.1. Connected client Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112

14.6.1.1. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112



14.6.1.2. PUT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

14.6.1.3. PATCH Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

14.6.2. Hub Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114

14.6.2.1. GET Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114

14.6.2.2. Request Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114

14.6.2.3. Response Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

14.6.3. Object description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

14.7. ClientInfo Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

15. Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

15.1. RoleType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

15.2. ConnectionStatusType enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

16. Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

16.1. CiString type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

16.2. DateTime type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

16.3. DisplayText class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

16.4. number type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

16.5. Price class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

16.6. string type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

16.7. URL type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117

17. Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118

17.1. Changes between OCPI 2.1.1 and 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118



Copyright © 2014 – 2018 NKL. All rights reserved.

This document is made available under the Creative Commons Attribution- NoDerivatives 4.0 International Public License

(https://creativecommons.org/licenses/by-nd/4.0/legalcode).

OCPI 2.2-RC1

1

https://creativecommons.org/licenses/by-nd/4.0/legalcode


Version History

Version Date Author Description

2.2 RC1 04-02-2019 Robert de Leeuw
IHomer

Release Candidate 1 of OCPI 2.2: Adds Smart Charging Profiles,
Hub Support, Credit CDRs and some more minor changes.
See changelog

2.2 DRAFT1 10-12-2018 Robert de Leeuw
IHomer

First draft of OCPI 2.2: contains lots of minor changes, some new
features, but still misses Smart Charging Profiles and Hub Support.
Proposals for the last 2 are ready, but still need some work and
need to be integrated into this document. 
See changelog

2.1.1 08-06-2017 Robert de Leeuw
IHomer

Fixed 4 bugs found in OCPI 2.1, lots of small textual improvements:
see changelog

2.1 08-04-2016 Robert de Leeuw
IHomer

Added command module.
Added support for real-time authorization.
Lots of small improvements: see changelog

2.0-d2 15-02-2016 Robert de Leeuw
IHomer

2nd documentation revision of the OCPI 2.0 spec.
Only documentation updated: ConnectorType of Connector
was not visible, credentials clarified, location URL
segments incorrect (now string, was int),
minor textual updates.
DateTime with timezones is still an issue

2.0 30-12-2015 Robert de Leeuw
IHomer
Simon Philips
Becharged
Chris Zwirello
The New Motion
Simon Schilling

First official release of OCPI.

0.4 04-11-2014 Olger Warnier
The New Motion

First draft of OCPI. (Also known as Draft v4)

0.3 06-05-2014 Olger Warnier
The New Motion

First draft of OCPI. (Also known as Draft v3)

Document revisions There can be multiple documentation revisions of the same version of the OCPI protocol.

The newer documentation revisions of the same protocol version can never change the content of the messages: no new fields or

renaming of fields. A new revision can only clarify/fix texts/descriptions and fix typos etc.

These documentation revisions (not the first) will be named: d2, d3, d4 etc.

Examples:

• OCPI 2.1.1 is a different protocol version of OCPI then OCPI 2.1.

• OCPI 2.0-d2 is the same protocol version as OCPI 2.0, but a newer documentation revision: same protocol, newer

documentation.

OCPI 2.2-RC1

2



1. OCPI

1.1. OCPI 2.2

OCPI 2.2 includes new functionality and improvements, compared to OCPI 2.1.1.

1.1.1. Editorial note

This is OCPI 2.2 Release Candidate 1. Functional everything is in this release candidate. The first draft has not had a lot of review,

so we are not yet confident enough to release a FINAL version yet. We hope that people take the time to review this version and

sand feedback so we can improve this. Even if you do not find any issues, please let us know.

We encourage companies to start implementing OCPI 2.2 based on this release candidate. The proof is in the pudding, we need

implementations to proof OCPI 2.2 is mature enough to be released as FINAL. When developers are implementing a specification

they are the once finding real world issues, most of the times. If they are able to implement OCPI 2.2 and get it working with other

parties, that is the proof we need.

We still want to add more examples, some sequence diagrams and use cases to explain the new functionality. We hope to add

these in the coming weeks.

1.1.2. Changes/New functionality:

• Support for Hubs

• Message routing headers

• Hub Client Info

• Support for Virtual CPO’s and eMSP’s and other roles

• Charging Profiles

• Preference based Smart Charging

• Improvements:

• CDRs: Credit CDRs, VAT, Session_id, CdrLocation, CdrToken

• Sessions: VAT, CdrToken

• CDRs: Tariff types, Min/Max price, reservation tariff, Much more examples

• Locations: Multiple Tariffs, Lost of small improvements

• Tokens: Group_id, energy contract

• Commands: Cancel Reservation added

For more information on detailedchanges see changelog.

1.2. Introduction and background

The Open Charge Point Interface (OCPI) enables a scalable, automated EV roaming setup between Charge Point Operators and e-

Mobility Service Providers. It supports authorization, charge point information exchange (including live status updates and

transaction events), charge detail record exchange, remote charge point commands and, finally, the exchange of smart-charging

commands between parties.

It offers market participants in EV an attractive and scalable solution for (international) roaming between networks, avoiding the

costs and innovation-limiting complexities involved with today’s non-automated solutions or with central roaming hubs. As such it

helps to enable EV drivers to charge everywhere in a fully-informed way, helps the market to develop quickly and helps market

players to execute their business models in the best way.

OCPI 2.2-RC1

3



What does it offer (main functionalities): * A good roaming system (for bilateral usage and/or via a hub). * Real-time information

about location, availability and price. * A uniform way of exchanging data (Notification Data Records and Charge Data Records),

before during and after the transaction. * Remote mobile support to access any charge station without pre-registration.

Starting in 2009, e-laad foundation and the predecessor of the eViolin association specified 2 standards in order to retrieve charge

point details and active state. These are called the VAS interface and the Amsterdam interface. In this same period, a CDR format

for the exchange of charge sessions between eViolin members was defined. This format is currently in use by the majority of the

eViolin members. (eViolin is the branch organisation for EV operators and service providers in NL and responsible for national

roaming and issuing of ID’s). This resulted in 2014 in the development of OCPI.

An international group of companies already supports OCPI. Initiators are EV Box, The New Motion, ElaadNL, BeCharged,

Greenflux and Last Mile Solutions. Other participants include Next Charge, Freshmile, Plugsurfing, Charge-partner, Hubject, e-

clearing.net, IHomer and Siemens. Several other major organizations and roaming platforms are interested in participating. The

Netherlands Knowledge Platform for Charging Infrastructure (NKL) facilitates and coordinates this project to guarantee progress

and ensure development and results. Part of this project is to find a place to continue development in the future.

This document describes a combined set of standards based on the work done in the past. Next to that, the evolution of these

standards and their use is taken into account and some elements have been updated to match nowadays use.

The latest version of this specification can be found here: https://github.com/ocpi/ocpi

OCPI 2.2-RC1

4

https://github.com/ocpi/ocpi


2. Terminology and Definitions

2.1. Abbreviations

Abbr. Description

OCPI Open Charge Point Interface

OCPP Open Charge Point Protocol

CDR Charge Detail Record

CPO Charging Point Operator

eMSP e-Mobility Service Provider

2.2. Provider and Operator abbreviation

In OCPI it is advised to use eMI3 compliant names for Contract IDs and EVSE IDs. The provider and the operator name is

important here, in order to target the right provider or operator, they need to be known up front, at least between the cooperating

parties.

In several standards, an issuing authority is mentioned that will keep a central registry of known Providers and Operators. At this

moment, the following countries have an authority that keeps track of the known providers and operators:

2.2.1. The Netherlands

The Dutch foundation, named eViolin keeps the registry for The Netherlands.

• The list of operator IDs and provider IDs can be viewed on their website eViolin/Leden.

2.2.2. Germany

The BDEW organisation keeps the registry for Germany in their general code number service bdew-codes.de.

• Provider ID List See https://bdew-codes.de/Codenumbers/EMobilityId/ProviderIdList

• EVSE Operator ID List See https://bdew-codes.de/Codenumbers/EMobilityId/OperatorIdList

2.2.3. Austria

Austrian Mobile Power GmbH maintains a registry for Austria. This list is not publicly available. For more information visit austrian-

mobile-power.at

2.2.4. France

The AFIREV* organisation will keep/keeps the registry for France. It provides operation Id for CPO and eMSP in compliance with

eMI3 id structure. The prefix of these Ids is the “fr” country code. AFIREV will also be in charge of the definition of EVSE-Id

structure, Charging-Pool-Id structure (location), and Contract-Id structure for France. AFIREV bases its requirements and

recommendations on eMI3 definitions.

AFIREV stands for: Association Française pour l’Itinérance de la Recharge Électrique des Véhicules

2.3. Charging topology

The charging topology, as relevant to the eMSP, consists of three entities:

OCPI 2.2-RC1

5

http://www.eviolin.nl
http://www.eviolin.nl/index.php/leden/
https://bdew-codes.de/
https://bdew-codes.de/Codenumbers/EMobilityId/ProviderIdList
https://bdew-codes.de/Codenumbers/EMobilityId/ProviderIdList
https://bdew-codes.de/Codenumbers/EMobilityId/OperatorIdList
https://bdew-codes.de/Codenumbers/EMobilityId/OperatorIdList
http://austrian-mobile-power.at/tools/id-vergabe/information/
http://austrian-mobile-power.at/tools/id-vergabe/information/


• Connector is a specific socket or cable available for the EV to make use of.

• EVSE is the part that controls the power supply to a single EV in a single session. An EVSE may provide multiple

connectors but only one of these can be active at the same time.

• Location is a group of one or more EVSEs that belong together geographically or spatially.

EVSE A3

EVSE A2

EVSE A1

Location A

EVSE B1

Location B

EVSE B4

Connectors

EVSE B3

Connectors

EVSE B2

Figure 1. Topology

A Location is typically the exact location of one or more EVSEs, but it can also be the entrance of a parking garage or a gated

community. It is up to the CPO to use whatever makes the most sense in a specific situation. Once arrived at the location, any

further instructions to reach the EVSE from the Location are stored in the EVSE object itself (such as the floor number, visual

identification or manual instructions).

2.4. Variable names

In order to prevent issues with Capitals in variable names, the naming in JSON is not CamelCase but snake_case. All variables are

lowercase and include an underscore for a space.

2.5. Cardinality

When defining the cardinality of a field, the following symbols are used throughout this document:

Symbol Description Type

? An optional object. If not set, it might be null, or the field might be omitted. When the field is omitted and
it has a default value, the value is the default value.

Object

1 Required object. Object

* A list of zero or more objects. If empty, it might be null, [] or the field might be omitted. [Object]

+ A list of at least one object. [Object]

OCPI 2.2-RC1

6



3. Transport and format

3.1. JSON / HTTP implementation guide

The OCPI protocol is based on HTTP and uses the JSON format. It follows a RESTful architecture for webservices where possible.

3.1.1. Security and authentication

The interfaces are protected on HTTP transport level, with SSL and token based authentication. Please note that this mechanism

does not require client side certificates for authentication, only server side certificates in order to setup a secure SSL connection.

3.1.2. Authorization header

Every OCPI HTTP request MUST add a 'Authorization' header. The header looks as follows:

  Authorization: Token IpbJOXxkxOAuKR92z0nEcmVF3Qw09VG7I7d/WCg0koM=

The literal 'Token' indicates that the token based authentication mechanism is used, in OCPI this is called the 'credentials token'.

'Credentials tokens' are exchanged via the credentials module. These are different 'tokens' then the Tokens exchanged via the

Token Module: Tokens used by drivers to authorize charging. To prevent confusion, when talking about the token used here in the

HTTP Authorization header, call them: 'Credentials Tokens'.

Its parameter is a string consisting of printable, non-whitespace ASCII characters.

The credentials token must uniquely identify the requesting party. This way, the server can use the information in the Authorization

header to the link the request to the correct requesting party’s account.

If the header is missing or the credentials token doesn’t match any known party then the server SHALL respond with a HTTP 401

- Unauthorized status code.

When a server receives a request with a valid CREDENTIALS_TOKEN_A, on another module then: credentials or versions,

the server SHALL respond with a HTTP 401 - Unauthorized status code.

3.1.3. Pull and Push

OCPI supports both 'pull' and 'push' models.

• Push: Changes in objects, and new objects are send (semi) real-time to receiver.

• Pull: Receiver request a (full) list of objects every X times.

OCPI doesn’t require parties to implement 'push'. 'pull' is required, a receiver needs to be able to get 'in-sync' after a period of

connection loss.

It is possible to implement a 'pull' only OCPI implementation, it might be a good starting point for an OCPI implementation.

However, it is strongly advised to implement 'push' for production systems that have to handle some load, especially when a

number of clients are requesting long lists frequently. 'Push' implementation tend to use much less resources. It is therefor advised

to clients 'pulling' lists from a server to do this on a relative low polling interval: think in hours, not minutes, and to introduce some

splay (randomize the length of the poll interface a bit).

3.1.4. Request format

The request method can be any of GET, PUT, PATCH or DELETE. The OCPI protocol uses them in a way similar to REST APIs.

OCPI 2.2-RC1

7



Method Description

GET Fetches objects or information.

POST Creates new objects or information.

PUT Updates existing objects or information.

PATCH Partially updates existing objects or information.

DELETE Removes existing objects or information.

The HTTP header: Content-Type SHALL be set to application/json for any request that contains a message body: POST,

PUT and PATCH. When no body is present, probably in a GET or DELETE, then the Content-Type header MAY be omitted.

3.1.4.1. GET

A server is not required to return all objects to a client, the server might for example not send all CDRs to a client, because some

CDRs do not belong to this client.

When a client receives objects from the server that contain invalid JSON or invalid OCPI objects (For example: missing fields), the

client has no way of letting this know to the server. It is advised to log these errors and contact the server administrator about this.

When a list of objects contains some objects that are correct and some with 'problems' the client should at least process the correct

OCPI objects.

Pagination

All GET methods that return a list of objects have pagination, this allows a client and server to control the amount of objects

returned in the response to a GET request, while still enabling the client to retrieve all objects by doing multiple request with

different parameters. Without pagination the server had to return all objects in one response that could potentially contain millions

of objects.

To enable pagination of the returned list of objects, additional URL parameters are allowed for the GET request and additional

headers need to be added to the response.

Paginated Request

The following table lists all the parameters that have to be supported, but might be omitted by a client request.

Parameter Description

offset The offset of the first object returned. Default is 0 (the first object).

limit Maximum number of objects to GET. Note: the server might decide to return fewer objects, either because
there are no more objects, or the server limits the maximum number of objects to return. This is to prevent, for
example, overloading the system.

Example: With offset=0 and limit=10 the server shall return the first 10 records (if 10 objects match the request). Then next page

starts with offset=10.

Paginated Response

For pagination to work correctly it is important that multiple calls to the same URL (including query parameters) result in the same

objects being returned by the server. For this to be the case it is important that the sequence of objects does not change. (or as

little as possible) It is best practice to return the oldest (by creation date, not the last_updated field) first. While a client crawls

over the pages (multiple GET requests every time to the 'next' page Link), a new object might be created on the server. The client

detects this: the X-Total-Count will be higher on the next call. But the client doesn’t have to correct for this. Only the last page

will be different (or an additional page). So the client will not be required to crawl all pages all over again, when the client has

reached to last page it has retrieved all relevant pages and is up to date.

Note: Some query parameters can cause concurrency problems. For example: the date_to query parameter. When there are for

example 1000 objects matching a query for all objects with date_to before 2016-01-01. While crawling over the pages one of

OCPI 2.2-RC1

8



these objects is update. The client detects this: X-Total-Count will be lower in a next request. It is advised redo the previous

GET but then with the offset lowered by 1 (if the offset was not 0) and after that continue crawling the 'next' page links. When

an object before this page has been updated, then the client has missed 1 object.

HTTP headers that have to be added to any paginated GET response.

HTTP Header Description

Link Link to the 'next' page should be provided, when this is NOT the last page. The Link should also
contain any filters present in the original request. See example below.

X-Total-Count (Custom HTTP Header) Total number of objects available in the server system that match the give
query (including the given query parameters for example: date_to and date_from but excluding
limit and offset) and that are available to this client. For example: The CPO server might
return less CDR objects to an eMSP then the total number of CDRs available in the CPO system.

X-Limit (Custom HTTP Header) Number of objects that are returned. Note that this is an upper limit, if
there are not enough remaining objects to return, fewer objects than this upper limit number will be
returned.

Pagination Examples

Example of a required OCPI pagination link header:

  Link: <https://www.server.com/ocpi/cpo/2.2/cdrs/?offset=150&limit=50>; rel="next"

After the client has called the given "next" page URL above the Link parameter will most likely look like this:

  Link: <https://www.server.com/ocpi/cpo/2.2/cdrs/?offset=200&limit=50>; rel="next"

Example of a query with filters: Client does a GET to:

  https://www.server.com/ocpi/cpo/2.2/cdrs/?date_from=2016-01-01T00:00:00Z&date_to=2016-12-31T23:59:59Z

The server should return (when the server has enough objects and the limit is the amount of objects the server wants to send is

100.) (This example should have been on 1 line, but didn’t fit the paper width.)

  Link: <https://www.server.com/ocpi/cpo/2.2/cdrs/?offset=100
                 &limit=100&date_from=2016-01-01T00:00:00Z&date_to=2016-12-31T23:59:59Z>; rel="next"

Example of a server limiting the amount of objects returned: Client does a GET to:

  https://www.server.com/ocpi/cpo/2.2/cdrs/?limit=2000

The server should return (when the server has enough objects and the limit is the amount of objects the server wants to send is

100.) The X-Limit HTTP header should be set to 100 as well.

  Link: <https://www.server.com/ocpi/cpo/2.2/cdrs/?offset=100&limit=100>; rel="next"

3.1.4.2. PUT

A PUT request must specify all required fields of an object (similar to a POST request). Optional fields that are not included will

revert to their default value which is either specified in the protocol or NULL.

OCPI 2.2-RC1

9



3.1.4.3. PATCH

A PATCH request must only specify the object’s identifier (if needed to identify this object) and the fields to be updated. Any fields

(both required or optional) that are left out remain unchanged.

The mimetype of the request body is application/json and may contain the data as documented for each endpoint.

In case a PATCH request fails, the client is expected to call the GET method to check the state of the object in the other party’s

system. If the object doesn’t exist, the client should do a PUT.

3.1.5. Client owned object push

Normal client/server RESTful services work in a way where the Server is the owner of the objects that are created. The client

requests a POST method with an object to the end-point URL. The response send by the server will contain the URL to the new

object. The client will request only one server to create a new object, not multiple servers.

Many OCPI modules work differently: the client is the owner of the object and only pushes the information to one or more servers

for information sharing purposes. For example: the CPO owns the Tariff objects and pushes them to a couple of eMSPs, so each

eMSP gains knowledge of the tariffs that the CPO will charge them for their customers' sessions. eMSP might receive Tariff objects

from multiple CPOs. They need to be able to make a distinction between the different tariffs from different CPOs.

The distinction between objects from different CPOs/eMSPs is made based on a {country_code} and {party_id}. The country_code

and party_id of the other party are received during the credentials handshake, so that a server might know the values a client will

use in an URL.

Client owned object URL definition: {base-ocpi-url}/{end-point}/{country-code}/{party-id}/{object-id}

Example of a URL to a client owned object

  https://www.server.com/ocpi/cpo/2.2/tariffs/NL/TNM/14

POST is not supported for these kind of modules. PUT is used to send new objects to the servers.

If a client tries to access an object with a URL that has a different country_code and/or party_id then given during the credentials

handshake, it is allowed the respond with a HTTP 404 status code, this way blocking client access to objects that do not belong to

them.

To identified the owner of data, the party generating the information that is provided to other parties via OCPI, a 'Data owner' is

provided at the beginning of every module that has a clear owner.

3.1.5.1. Errors

When a client pushes a client owned object, but the {object-id} in the URL is different from the id in the object being pushed. A

Server implementation is advised to return an OCPI status code: 2001.

3.1.6. Response format

The content that is sent with all the response messages is an 'application/json' type and contains a JSON object with the following

properties:

Property Type Card. Description

data Array or
Object or
String

* or ? Contains the actual response data object or list of objects from each request,
depending on the cardinality of the response data, this is an array (card. * or +),
or a single object (card. 1 or ?)

status_code int 1 Response code, as listed in Status Codes, indicates how the request was
handled. To avoid confusion with HTTP codes, at least four digits are used.

OCPI 2.2-RC1

10



Property Type Card. Description

status_message string ? An optional status message which may help when debugging.

timestamp DateTime 1 The time this message was generated.

For brevity’s sake, any further examples used in this specification will only contain the value of the "data" field. In reality, it will

always have to be wrapped in the above response format.

When a request cannot be accepted, an HTTP error response code is expected, including the response format above, that contains

more details. HTTP status codes are described on w3.org.

3.1.6.1. Example: Version information response (list of objects)

{
  "data": [{
    "version": "2.1.1",
    "url": "https://example.com/ocpi/cpo/2.1.1/"
  }, {
    "version": "2.2",
    "url": "https://example.com/ocpi/cpo/2.2/"
  }],
  "status_code": 1000,
  "status_message": "Success",
  "timestamp": "2015-06-30T21:59:59Z"
}

3.1.6.2. Example: Version details response (one object)

{
  "data": {
    "version": "2.2",
    "endpoints": [{
      "identifier": "credentials",
      "url": "https://example.com/ocpi/cpo/2.2/credentials/"
    }, {
      "identifier": "locations",
      "url": "https://example.com/ocpi/cpo/2.2/locations/"
    }]
  },
  "status_code": 1000,
  "status_message": "Success",
  "timestamp": "2015-06-30T21:59:59Z"
}

3.1.6.3. Example: Tokens GET Response with one Token object. (CPO end-point) (one
object)

{
  "data": {
    "uid": "012345678",
    "type": "RFID",
    "contract_id": "FA54320",
    "visual_number": "DF000-2001-8999",
    "issuer": "TheNewMotion",
    "valid": true,
    "whitelist": "ALLOWED",
    "last_updated": "2015-06-29T22:39:09Z"
  },
  "status_code": 1000,
  "status_message": "Success",
  "timestamp": "2015-06-30T21:59:59Z"
}

OCPI 2.2-RC1

11

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html


3.1.6.4. Example: Tokens GET Response with list of Token objects. (eMSP end-point) (list of
objects)

{
  "data": [{
    "uid": "100012",
    "type": "RFID",
    "contract_id": "FA54320",
    "visual_number": "DF000-2001-8999",
    "issuer": "TheNewMotion",
    "valid": true,
    "whitelist": "ALWAYS",
    "last_updated": "2015-06-21T22:39:05Z"
  }, {
    "uid": "100013",
    "type": "RFID",
    "contract_id": "FA543A5",
    "visual_number": "DF000-2001-9000",
    "issuer": "TheNewMotion",
    "valid": true,
    "whitelist": "ALLOWED",
    "last_updated": "2015-06-28T11:21:09Z"
  }, {
    "uid": "100014",
    "type": "RFID",
    "contract_id": "FA543BB",
    "visual_number": "DF000-2001-9010",
    "issuer": "TheNewMotion",
    "valid": false,
    "whitelist": "ALLOWED",
    "last_updated": "2015-05-29T10:12:26Z"
  }],
  "status_code": 1000,
  "status_message": "Success",
  "timestamp": "2015-06-30T21:59:59Z"
}

3.1.6.5. Example: Response with an error (contains no data field)

{
    "status_code": 2001,
    "status_message": "Missing required field: type",
    "timestamp": "2015-06-30T21:59:59Z"
}

3.1.7. Message Routing Headers

When developement of OCPI was started, it was designed for peer-to-peer communication between CPO and MSP. This has

advantages, but also disadvantages. Having to setup and maintain OCPI connections to a lot of parties requires more effort then

doing for only a couple of connections. By communication via one or more Hubs, the amount of OCPI connections is limit, while still

being able to offer roaming to a lot of different parties to customers.

With the introduction of Message Routing, OCPI is now better usable for communication via Hubs. With this same functionality is

also becomes possible to implement virtual CPO/eMSPs. A Virtual party is a party that does not has its own back-office, but relies

on another parties IT systems. This is sometimes also called white-label CPO/eMSP.

When OCPI is used to communicatie via a Hub or to a virtual CPO/eMSP the following 4 HTTP headers can be used, in requests

and responses.

HTTP Header Description

OCPI-to-party-id 'party id' of the connected party this messages is to be send to.

OCPI-to-country-code 'country code' of the connected party this messages is to be send to.

OCPI 2.2-RC1

12



HTTP Header Description

OCPI-from-party-id 'party id' of the connected party this messages is send from.

OCPI-from-country-code 'country code' of the connected party this messages is send from.

CPO1 HUB MSP1

HTTP: GET
TO: MSP1
FROM: CPO1

HTTP: GET
TO: MSP1
FROM: CPO1

HTTP: RESPONSE
TO: CPO1
FROM: MSP1

HTTP: RESPONSE
TO: CPO1
FROM: MSP1

Figure 2. Example sequence diagram of a GET for 1 Object from a CPO to an MSP.

CPO1 HUB1 HUB2 MSP1

HTTP: PUT
TO: MSP1
FROM: CPO1

HTTP: PUT
TO: MSP1
FROM: CPO1

HTTP: PUT
TO: MSP1
FROM: CPO1

HTTP: RESPONSE 200
TO: CPO1
FROM: MSP1

HTTP: RESPONSE 200
TO: CPO1
FROM: MSP1

HTTP: RESPONSE 200
TO: CPO1
FROM: MSP1

Figure 3. Example sequence diagram of a PUT via 2 Hubs.

3.1.7.1. Omitting from address in responses

When a party responses to a request (via a hub), and it was a request that contained the 'OCPI-to-' headers, the 'OCPI-from-'

headers might be omitted. The requesting party knows to which party the request was send. It might be good practice to always

provide the 'OCPI-from-' headers in a response, just to be complete and to give a requesting party to change to validate if the

request was routed correctly by the Hub.

OCPI 2.2-RC1

13



3.1.7.2. Broadcast push

For simplicity, connected clients might PUSH (POST, PUT, PATCH) information to all connected clients with an "opposite role", CPO

pushing information to all eMSPs and NSPs. eMSP pushing information to all CPOs. (the role "Other" is seen as an eMSP type of

role, so broadcast push from a CPO is also send to Other, messages from "Other" are send to CPOs, not the eMSPs.)

Broadcast push might be very useful to push information like Locations or Tokens to all parties, connected to the Hub that have

implemented the corresponding module. This means only 1 request to the Hub, not having to worry about the number of connected

clients.

To send a Broadcast push, the client uses to Hubs party-id and country-code in the 'OCPI-to-' headers. The Hub parses the request

and send a response to the client, with optionally its own party-id and country-code in the 'OCPI-from-' headers. The Hub then send

to push to any client implementing the applicable module, using its own party-id and country-code in the 'OCPI-from-' headers. The

client receiving a push from a Hub (with the Hubs information in the 'OCPI-from-' headers) will respond to this push with the Hubs

party-id and country-code in the 'OCPI-to-' headers.

GET SHALL NOT be used in combination with Broadcast push. If the requesting party wants to GET information of which it does

not know the receiving party, to Open routing request should be used. (see below)

Broadcast push SHALL only be used with information that is meant to be send to all other parties. It is useful for things like: Tokens

and Locations, but not for CDRs and Sessions.

NOTE
For "Client owned objects" the party-id and country-code in the URL segments will still be the original party-id

and country-code from the original client sending the Broadcast push to the Hub.

CPO1 HUB MSP1 MSP2 MSP3

HTTP: PUT
TO: HUB
FROM: CPO1

HTTP: RESPONSE 200?
TO: CPO1
FROM: HUB

HTTP: PUT
TO: MSP1
FROM: HUB

HTTP: RESPONSE 401
TO: HUB
FROM: MSP1

HTTP: PUT
TO: MSP2
FROM: HUB

HTTP: RESPONSE 200
TO: HUB
FROM: MSP2

HTTP: PUT
TO: MSP3
FROM: HUB

HTTP: RESPONSE 200
TO: HUB
FROM: MSP3

Figure 4. Example sequence diagram of a broadcast PUT from a CPO to multiple MSPs.

OCPI 2.2-RC1

14



3.1.7.3. Open routing request

When a Hub has the intelligence to route messages, based on the content of the request, or the requesting party does not know

the destination of a request, the 'OCPI-to-' headers can be omitted in the request towards a hub. The Hub can then decide to which

part a request needs to be routed, or that it needs to be broadcasted.

CPO1 HUB MSP1 MSP2 MSP3

HTTP: GET
FROM: CPO1

Determine
routing

HTTP: GET
TO: MSP2
FROM: CPO1

HTTP: RESPONSE 200
TO: CPO1
FROM: MSP2

HTTP: RESPONSE 200
TO: CPO1
FROM: MSP2

Figure 5. Example sequence diagram of a open routing GET from a CPO via the Hub.

GET All from Hub not possible

It is not possible for a client to ask the Hub for all objects within a certain module from all other parties.

Examples:

• A eMSP cannot ask the Hub for all the Locations the hub knows from all connected CPOs.

• A CPO cannot ask the Hub for all the Tokens a hub knows from all connected eMSPs.

The Tokens example: When the Hub would combine all the Tokens it knows and return them in one (paginated) response to the

client, there will be Tokens from different MSPs in the same response, but there can only be one set of 'OCPI-from-' headers, which

means the CPO cannot determine which Token belongs to which (virtual) MSP.

3.1.7.4. Overview of required/optional routing headers for different scenarios

The following sections shows which headers are required/optional to be used, and which 'OCPI-to-'/OCPI-from-' IDs need to be

used.

This is not an exclusive list, combinations are possible.

When the hub sends something to a virtual-party, the 'OCPI-to-' headers are required.

When the hub receives something from a virtual-party, the 'OCPI-from-' headers are required.

Party to Party via Hub

This table contains the description of which headers are required to be used for which message when a request is directly routed to

a receiving party (and both parties are real CPO/eMSP, not virtual CPOs/eMSPs).

OCPI 2.2-RC1

15



Name Route TO Header FROM Header Description

Direct request Requesting party to Hub Receiving-party FROM headers are
optional, Hub knows the
requesting party

Direct request Hub to receiving party Requesting-party TO headers are optional,
party knows this request is
for the party itself.

Direct response receiving party to Hub Requesting-party FROM headers are
optional, Hub knows the
responding party

Direct response Hub to requesting party Receiving-party TO headers are optional,
party knows this response
is for the party itself.

Virtual-party to Virtual-Party via Hub

This table contains the description of which header are required to be used for which message when a request is directly routed

from a virtual party to a virtual party. In this scenario all headers are needed because the receiving/sending party is not the virtual-

party themselves.

Name Route TO Header FROM Header Description

Direct request Requesting party to Hub Receiving-virtual-
party

Requesting-virtual-
party

Direct request Hub to receiving party Receiving-virtual-
party

Requesting-virtual-
party

Direct response receiving party to Hub Requesting-virtual-
party

Receiving-virtual-
party

Direct response Hub to requesting party Requesting-virtual-
party

Receiving-virtual-
party

Party to Party broadcast push

This table contains the description of which header are required to be used for which message when a request is a broadcast push

to the hub.

Name Route TO Header FROM Header Description

Broadcast request Requesting party to Hub Hub FROM headers are
optional, Hub knows the
requesting party

Broadcast response Hub to requesting party Hub TO headers are optional,
party knows this response
is for the party itself.

Broadcast request Hub to receiving party Hub TO headers are optional,
party knows this request is
for the party itself.

Broadcast response receiving party to Hub Hub FROM headers are
optional, Hub knows the
responding party

Virtual-party to Virtual-Party broadcast push

This table contains the description of which header are required to be used for which message when a request is to be broadcasted

by the hub and both parties are virtual parties. For a broadcast, the TO headers in the request from the requesting party to the Hub

should contain the information of the Hub.

OCPI 2.2-RC1

16



Name Route TO Header FROM Header Description

Broadcast request Requesting party to Hub Hub Requesting-party

Broadcast response Hub to requesting party Requesting-party Hub

Broadcast request Hub to receiving party Receiving-party Hub

Broadcast response receiving party to Hub Hub Receiving-party

Party to Party open routing request

This table contains the description of which header are required to be used for which message when a request to be routed by the

Hub itself. For an Open Request, the TO headers in the request from the requesting party to the Hub has to omitted.

Name Route TO Header FROM Header Description

Open request Requesting party to Hub Omitting the TO headers
indicates to the Hub that
the Hub has to figure out
the routing.

Open request Hub to receiving party Requesting-party TO headers can be omitted,
when the receiving party is
NOT a virtual party.

Open response receiving party to Hub Requesting-party Receiving-party FROM headers can be
omitted, when the receiving
party is NOT a virtual party.

Open response Hub to requesting party Requesting-party Receiving-party TO headers can be omitted,
when the requesting party
is NOT a virtual party.

3.2. Unique message IDs

For debugging issues, OCPI implementations are required to include unique IDs via HTTP headers in every request/response.

HTTP Header Description

X-Request-ID Every request SHALL contain a unique request ID, the response to this request SHALL contain the
same ID.

X-Correlation-ID Every request/response send via a Hub SHALL contain a unique correlation-ID, every response to
this request SHALL contain the same ID.

It is advised to used GUID/UUID as values for X-Request-ID and X-Correlation-ID.

When a Hub forwards a request to a party, the request to the other party SHALL a new/unique value in the X-Request-ID HTTP

header, not copy the X-Request-ID HTTP header from the incoming request that was forwarded.

When a Hub forwards a request to a party, the request SHALL contain the same X-Correlation-ID HTTP header (with the same

value)

TODO Add sequence diagram to show how X-Request-ID and X-Correlation-ID work together

3.3. Interface endpoints

As OCPI contains multiple interfaces, different endpoints are available for messaging. The protocol is designed such that the exact

URLs of the endpoints can be defined by each party. It also supports an interface per version.

The locations of all the version specific endpoints can be retrieved by fetching the API information from the versions endpoint. Each

version specific endpoint will then list the available endpoints for that version. It is strongly recommended to insert the protocol

version into the URL.

OCPI 2.2-RC1

17



For example: /ocpi/cpo/2.2/locations and /ocpi/emsp/2.2/locations.

The URLs of the endpoints in this document are descriptive only. The exact URL can be found by fetching the endpoint information

from the API info endpoint and looking up the identifier of the endpoint.

Operator interface Identifier Example URL

Credentials credentials https://example.com/ocpi/cpo/2.2/credentials

Charging location details locations https://example.com/ocpi/cpo/2.2/locations

eMSP interface Identifier Example URL

Credentials credentials https://example.com/ocpi/emsp/2.2/credentials

Charging location updates locations https://example.com/ocpi/emsp/2.2/locations

3.4. Offline behaviour

During communication over OCPI, it might happen that one of the communication parties is unreachable for an amount of time.

OCPI works event based, new messages and status are pushed from one party to another. When communication is lost, updates

cannot be delivered.

OCPI messages should not be queued. When a client does a POST, PUT or PATCH request and that requests fails or times out,

the client should not queue the message and retry the same message again on a later time.

When the connection is re-established, it is up to the target-server of a connection to GET the current status from to source-server

to get back in-sync. For example: - CDRs of the period of communication loss can be rerieved with a GET command on the CDRs

module, with filters to retrieve only CDRs of the period since the last CDR was received. - Status of EVSEs (or Locations) can be

retrieved by calling a GET on the Locations module.

OCPI 2.2-RC1

18



4. Status codes

There are two types of status codes: - Transport related (HTTP) - Content related (OCPI)

The transport layer ends after a message is correctly parsed into a (semantically unvalidated) JSON structure. When a message

does not contain a valid JSON string, the HTTP error 400 - Bad request is returned.

If a request is syntactically valid JSON and addresses an existing resource, no HTTP error should be returned. Those requests are

supposed to have reached the OCPI layer. As is customary for RESTful APIs: if the resource does NOT exist, the server should

return a HTTP 404 - Not Found.

When the server receives a valid OCPI object it should respond with:

• HTTP 200 - Ok when the object already existed and is successfully updated.

• HTTP 201 - Created when the object is newly created in the server system.

Requests that reach the OCPI layer should return an OCPI response message with a status_code field as defined below.

Range Description

1xxx Success

2xxx Client errors – The data sent by the client can not be processed by the server

3xxx Server errors – The server encountered an internal error

When the status code is in the success range (1xxx), the data field in the response message should contain the information as

specified in the protocol. Otherwise the data field is unspecified and may be omitted, null or something else that could help to

debug the problem from a programmer’s perspective. For example, it could specify which fields contain an error or are missing.

4.1. 1xxx: Success

Code Description

1000 Generic success code

4.2. 2xxx: Client errors

Errors detected by a server in the message sent by a client: The client did something wrong

Code Description

2000 Generic client error

2001 Invalid or missing parameters

2002 Not enough information, for example: Authorization request with too little information.

2003 Unknown Location, for example: Command: START_SESSION with unknown location.

4.3. 3xxx: Server errors

Error during processing of the OCPI payload in the server. The message was syntactically correct but could not be processed by

the server.

Code Description

3000 Generic server error

OCPI 2.2-RC1

19



Code Description

3001 Unable to use the client’s API. For example during the credentials registration: When the initializing
party requests data from the other party during the open POST call to its credentials endpoint. If
one of the GETs can not be processed, the party should return this error in the POST response.

3002 Unsupported version.

3003 No matching endpoints or expected endpoints missing between parties. Used during the
registration process if the two parties do not have any mutual modules or endpoints available, or
the minimum expected by the other party implementation.

4.4. 4xxx: Hub errors

When a server encounters an error, client side error (2xxx) or server side error (3xxx), it is send to status code to the Hub, the Hub

SHALL forward this error to the client sending the request (when the request was not a broadcast push).

For errors that a Hub encounters when routing messages, the following OCPI status codes shall be used.

Code Description

4001 Unknown receiver (TO address is unknown).

4002 Timeout on forwarded request (Message is forwarded, but request times out.)

4003 Connection problem (Receiving party is not connected)

OCPI 2.2-RC1

20



5. Versions module

This is the required base module of OCPI. This is module is the start point for any OCPI connection. Via this module, clients can

learn which versions of OCPI a server supports, and which modules it supports for each version of OCPI.

5.1. Version information endpoint

This endpoint lists all the available OCPI versions and the corresponding URLs to where version specific details such as the

supported endpoints can be found.

Endpoint structure definition:

No structure defined. This is open for every party to define themselves.

Examples:

https://www.server.com/ocpi/cpo/versions

https://www.server.com/ocpi/emsp/versions

https://ocpi.server.com/versions

The exact URL to the implemented version endpoint should be given (offline) to parties that interface with your OCPI

implementation, this endpoint is the starting point for discovering locations of the different modules and versions of OCPI that have

been implemented.

Both the CPO and the eMSP must have this endpoint.

Method Description

GET Fetch information about the supported versions.

5.1.1. Data

Property Type Card. Description

versions Version + A list of supported OCPI versions.

5.1.2. Version class

Property Type Card. Description

version VersionNumber 1 The version number.

url URL 1 URL to the endpoint containing version specific information.

5.1.3. GET

Fetch all supported OCPI versions of this CPO or eMSP.

5.1.3.1. Example

OCPI 2.2-RC1

21



[
  {
    "version": "2.1.1",
    "url": "https://www.server.com/ocpi/2.1.1/"
  },
  {
    "version": "2.2",
    "url": "https://www.server.com/ocpi/2.2/"
  }
]

5.2. Version details endpoint

Via the version details, the parties can exchange which modules are implemented for a specific version of OCPI, which Interface

role is implemented, and what the endpoint URL is for this interface.

Parties that are both CPO and eMSP (or are a Hub) can implement one version endpoint. With the information that is available in

the version details, parties don’t need to implement a separate endpoint per role (CPO or MSP) anymore. In the reality this means

that when a company that is both a CPO and a MSP connects to another CPO/MSP combination, only one OCPI connection is

needed.

NOTE OCPI 2.2 introduces the role field in the version details. Older versions of OCPI do not support this.

Endpoint structure definition:

No structure defined. This is open for every party to define themselves.

Examples:

https://www.server.com/ocpi/cpo/2.2

https://www.server.com/ocpi/emsp/2.2

https://ocpi.server.com/2.2/details

This endpoint lists the supported endpoints and their URLs for a specific OCPI version. To notify the other party that the list of

endpoints of your current version has changed, you can send a PUT request to the corresponding credentials endpoint (see the

credentials chapter).

Both the CPO and the eMSP must have this endpoint.

Method Description

GET Fetch information about the supported endpoints for this version.

5.2.1. Data

Property Type Card. Description

version VersionNumber 1 The version number.

endpoints Endpoint + A list of supported endpoints for this version.

5.2.2. Endpoint class

Property Type Card. Description

identifier ModuleID 1 Endpoint identifier.

role InterfaceRole 1 Interface role this endpoint implements.

OCPI 2.2-RC1

22



Property Type Card. Description

url URL 1 URL to the endpoint.

NOTE for the credentials module the role is not relevant as this module is the same for all roles.

5.2.3. InterfaceRole enum

Value Description

CPO CPO Interface implementation

MSP MSP Interface implementation

5.2.4. ModuleID enum

The Module identifiers for each endpoint are in the beginning of each Module chapter. The following table contains the list of

modules in this version of OCPI. Most modules (except Credentials & registration) are optional, but there might be dependencies

between modules, if so that will be mentioned in the module description.

Module ModuleID Remark

CDRs cdrs

Charging Profiles chargingprofiles

Commands commands

Credentials & registration credentials Required for all implementations

Hub Client Info hubclientinfo

Locations locations

Sessions sessions

Tariffs tariffs

Tokens tokens

5.2.5. VersionNumber enum

List of known versions.

Value Description

2.0 OCPI version 2.0.

2.1 OCPI version 2.1. (DEPRECATED, do not use, use 2.1.1 instead)

2.1.1 OCPI version 2.1.1.

2.2 OCPI version 2.2. (this version)

5.2.5.1. Custom Modules

Parties are allowed to create custom modules or customized versions of the existing modules. For this the ModuleID enum can be

extended with additional custom moduleIDs. These custom moduleIDs MAY only be sent to parties with which there is an

agreement to use a custom module. Do NOT send custom moduleIDs to parties you are not 100% sure will understand the custom

moduleIDs. It is advised to use a prefix (country_code + party_id) for any custom moduleID, this ensures that the moduleID will not

be used for any future module of OCPI.

For example: nltnm-tokens

OCPI 2.2-RC1

23



5.2.6. GET

Fetch information about the supported endpoints and their URLs for this version.

5.2.6.1. Examples

Simple version details example: CPO with only 2 modules.

{
  "version": "2.2",
  "endpoints": [
    {
      "identifier": "credentials",
      "role": "CPO",
      "url": "https://example.com/ocpi/cpo/2.2/credentials/"
    },
    {
      "identifier": "locations",
      "role": "CPO",
      "url": "https://example.com/ocpi/cpo/2.2/locations/"
    }
  ]
}

Simple version details example: party with both CPO and MSP with only 2 modules.

In this case the credentials module is not defined twice as this module is the same for all roles.

{
  "version": "2.2",
  "endpoints": [
    {
      "identifier": "credentials",
      "role": "CPO",
      "url": "https://example.com/ocpi/2.2/credentials/"
    },
    {
      "identifier": "locations",
      "role": "CPO",
      "url": "https://example.com/ocpi/cpo/2.2/locations/"
    },
    {
      "identifier": "tokens",
      "role": "CPO",
      "url": "https://example.com/ocpi/cpo/2.2/locations/"
    },
    {
      "identifier": "locations",
      "role": "MSP",
      "url": "https://example.com/ocpi/msp/2.2/locations/"
    },
    {
      "identifier": "tokens",
      "role": "MSP",
      "url": "https://example.com/ocpi/msp/2.2/locations/"
    }
  ]
}

OCPI 2.2-RC1

24



6. Credentials module

Module Identifier: credentials

The credentials module is used the exchange the credentials token that has to be used by parties for authorization.

Every OCPI request is required to contain a credentials token in a HTTP Authorization header.

6.1. Use cases

6.1.1. Registration

To register a CPO in an eMSP platform (or vice versa), the CPO must create a unique credentials token that can be used for

authenticating the eMSP. This credentials token along with the versions endpoint should be sent to the eMSP in a secure way that

is outside the scope of this protocol.

CREDENTIALS_TOKEN_A is given offline, after registration store the CREDENTIALS_TOKEN_C which will be used in future

exchanges. The CREDENTIALS_TOKEN_A can then be thrown away.

The eMSP starts the registration process, retrieves the version information and details (using CREDENTIALS_TOKEN_A in the

HTTP Authorization header). The eMSP generates CREDENTIALS_TOKEN_B, send it to the CPO in a POST request to the

credentials module of the CPO. The CPO stores CREDENTIALS_TOKEN_B and uses it for any requests to the eMSP, including

the version information and details.

(In the sequence diagrams below we use relative paths as short resource identifiers to illustrate a point; please note that they

should really be absolute URLs in any working implementation of OCPI)

OCPI 2.2-RC1

25



OCPI Registration process

CPO eMSP

Offline

Generate token: CREDENTIALS_TOKEN_A

send information via e-mail
(CREDENTIALS_TOKEN_A,

"https://company.com/ocpi/cpo/versions", ...)

OCPI

GET /ocpi/cpo/versions
The eMSP uses CREDENTIALS_TOKEN_A
as authentication to fetch information
from the CPO.

Available versions

Pick latest mutual version (e.g. 2.2).

GET /ocpi/cpo/2.2/

Available endpoints for v2.2

Store version and endpoints

Generate token: CREDENTIALS_TOKEN_B

POST /ocpi/cpo/2.2/credentials
("/ocpi/emsp/versions", CREDENTIALS_TOKEN_B, ...)

The CPO does not directly respond to the POST request
The CPO first needs to retrieve the versions en endpoints
from the eMSP before responding with CREDENTIALS_TOKEN_C

Store CREDENTIALS_TOKEN_B

GET /ocpi/emsp/versions

Available versions

GET /ocpi/emsp/2.2/

Available endpoints for v2.2
The CPO knows it's version 2.2 because
of the endpoint the eMSP has used. The URL
is retrieved from the available versions.

Store version and endpoints

The CPO generates CREDENTIALS_TOKEN_C and returns
it in the response to the HTTP POST credentials request
from the MSP above.

Generate CREDENTIALS_TOKEN_C

Credentials with CREDENTIALS_TOKEN_C for eMSP
By returning new credentials for the eMSP,
the initial setup token (CREDENTIALS_TOKEN_A)
has now become invalid.

Store updated credentials with
CREDENTIALS_TOKEN_C

Figure 6. The OCPI registration process

OCPI 2.2-RC1

26



Due to its symmetric nature, the CPO and eMSP can be swapped in the registration sequence.

6.1.2. Updating to a newer version

At some point both parties will have implemented a newer OCPI version. To start using the newer version, one party has to send a

PUT request to the credentials endpoint of the other party.

OCPI Update process

CPO eMSP

GET /ocpi/cpo/versions

Available versions

Pick latest mutual version (e.g. 2.0).

GET /ocpi/cpo/2.0/

Available endpoints for v2.0

Store version and endpoints

PUT /ocpi/cpo/2.0/credentials

GET /ocpi/emsp/versions

Available versions

GET /ocpi/emsp/2.0/

Available endpoints for v2.0
The CPO knows it's version 2.0 because
of the endpoint the eMSP has used. The URL
is retrieved from the available versions.

Store version and endpoints

Return updated credentials for eMSP

Store updated credentials

Figure 7. The OCPI update process

6.1.3. Changing endpoints for the current version

This can be done by following the update procedure for the same version. By sending a PUT request to the credentials endpoint of

this version, the other party will fetch and store the corresponding set of endpoints.

6.1.4. Updating the credentials and resetting the credentials token

The credentials (or parts thereof, such as the credentials token) can be updated by sending the new credentials via a PUT request

to the credentials endpoint of the current version, similar to the update procedure described above.

6.1.5. Errors during registration

When the Server connects back to the client during the credentials registration, it might encounter problems. When this happens,

OCPI 2.2-RC1

27



the Server should add the status code: 3001 in the response to the POST from the client.

6.1.6. Required endpoints not available

When two parties connect, it might happen that one of the parties expects a certain endpoint to be available at the other party.

For example: a CPO could only want to connect when the CDRs endpoint is available in an eMSP system.

In case the client is starting the credentials exchange process and cannot find the endpoints it expects, it is expected NOT to send

the POST request with credentials to the server. Log a message/notify the administrator to contact the administrator of the server

system.

In case the server, receiving the request from a client, cannot find the endpoints it expects, then it is expected to respond to the

request with a status code: 3003.

6.2. Interfaces and endpoints

Example: /ocpi/cpo/2.2/credentials and /ocpi/emsp/2.2/credentials

Method Description

GET Retrieves the credentials object to access the server’s platform.

POST Provides the server with a credentials object to access the client’s system (i.e. register).

PUT Provides the server with an updated credentials object to access the client’s system.

PATCH n/a

DELETE Informs the server that its credentials to the client’s system are now invalid (i.e. unregister).

6.2.1. GET Method

Retrieves the credentials object to access the server’s platform. The request body is empty, the response contains the credentials

object to access the server’s platform. This credentials object also contains extra information about the server such as its business

details.

6.2.2. POST Method

Provides the server with credentials to access the client’s system. This credentials object also contains extra information about the

client such as its business details.

A POST initiates the registration process for this endpoint’s version. The server must also fetch the client’s endpoints for this version.

If successful, the server must generate a new credentials token and respond with the client’s new credentials to access the server’s

system. The credentials object in the response also contains extra information about the server such as its business details.

This must return a HTTP status code 405: method not allowed if the client was already registered.

6.2.3. PUT Method

Provides the server with updated credentials to access the client’s system. This credentials object also contains extra information

about the client such as its business details.

A PUT will switch to the version that contains this credentials endpoint if it’s different from the current version. The server must fetch

the client’s endpoints again, even if the version has not changed.

If successful, the server must generate a new credentials token for the client and respond with the client’s updated credentials to

access the server’s system. The credentials object in the response also contains extra information about the server such as its

OCPI 2.2-RC1

28



business details.

This must return a HTTP status code 405: method not allowed if the client was not registered yet.

6.2.4. DELETE Method

Informs the server that its credentials to access the client’s system are now invalid and can no longer be used. Both parties must

end any automated communication. This is the unregistration process.

This must return a HTTP status code 405: method not allowed if the client was not registered.

6.3. Object description

6.3.1. Credentials object

Property Type Card. Description

token string(64) 1 The credentials token for the other party to authenticate in your system.

url URL 1 The URL to your API versions endpoint.

roles CredentialsRole + List of the roles this party provides.

Every role needs a unique combination of: role, party_id and country_code.

A party can have the some role more then once, for example when a CPO provides 'white label' services for virtual CPOs.

One or more roles and thus party_id and country_code sets are provided here to inform a server about the party_id and

country_code sets a client will use when pushing client owned objects. This helps a server determine the URLs a client will use

when pushing a client owned object. The country_code is added the make certain the URL used when pushing a client owned

object is unique, there might be multiple parties in the world with the same party_id, but the combination should always be

unique. A party operating in multiple countries can always use the home country of the company for all connections.

For example: an OCPI implementation might push EVSE IDs from a company for different countries, preventing an OCPI

connection per country a company is operating in.

The party_id and country_code give here, have no direct link with the eMI3 EVSE IDs and Contract IDs that might be used in

the different OCPI modules.

For example: an party implementing OCPI might push EVSE IDs with an eMI3 spot operator different from the OCPI

party_id and/or the country_code.

6.3.2. Examples

Example of a minimal CPO credentials object

{
    "token": "ebf3b399-779f-4497-9b9d-ac6ad3cc44d2",
    "url": "https://example.com/ocpi/versions/",
    "roles": [{
        "role": "CPO",
        "party_id": "EXA",
        "country_code": "NL",
        "business_details": {
            "name": "Example Operator"
        }
    }]
}

Example of a combined CPO/MSP credentials object

OCPI 2.2-RC1

29



{
    "token": "9e80a9c4-28be-11e9-b210-d663bd873d93",
    "url": "https://ocpi.example.com/versions/",
    "roles": [{
        "role": "CPO",
        "party_id": "EXA",
        "country_code": "NL",
        "business_details": {
            "name": "Example Operator"
        }
    }, {
        "role": "MSP",
        "party_id": "EXA",
        "country_code": "NL",
        "business_details": {
            "name": "Example Provider"
        }
    }]
}

Example of CPO credentials object with full business details

{
    "token": "9e80ae10-28be-11e9-b210-d663bd873d93",
    "url": "https://example.com/ocpi/versions/",
    "roles": [{
        "role": "CPO",
        "party_id": "EXA",
        "country_code": "NL",
        "business_details": {
            "name": "Example Operator",
            "logo": {
                "url": "https://example.com/img/logo.jpg",
                "thumbnail": "https://example.com/img/logo_thumb.jpg",
                "category": "OPERATOR",
                "type": "jpeg",
                "width": 512,
                "height": 512
            },
            "website": "http://example.com"
        }
    }]
}

Example of CPO credentials object with virtual CPOs

OCPI 2.2-RC1

30



{
    "token": "9e80aca8-28be-11e9-b210-d663bd873d93",
    "url": "https://ocpi.example.com/versions/",
    "roles": [{
        "role": "CPO",
        "party_id": "EXA",
        "country_code": "NL",
        "business_details": {
            "name": "Operator"
        }
    }, {
        "role": "CPO",
        "party_id": "VPA",
        "country_code": "NL",
        "business_details": {
            "name": "Virtual Provider 1"
        }
    }, {
        "role": "CPO",
        "party_id": "VPB",
        "country_code": "NL",
        "business_details": {
            "name": "Virtual Provider 2"
        }
    }]
}

6.4. Data types

6.4.1. CredentialsRole class

Property Type Card. Description

role Role 1 Type of Role.

business_details BusinessDetails 1 Details of this party.

party_id CiString(3) 1 CPO, eMSP (or other role) ID of this party. (following the 15118 ISO
standard).

country_code CiString(2) 1 Country code of the country this party is operating in.

6.4.2. Role enum

Value Description

CPO Charge Point Operator Role

MSP eMobility Service Provider Role

HUB Hub role

NSP Navigation Service Provider Role

OTHER Other role

SCSP Smart Charging Service Provider Role

OCPI 2.2-RC1

31



7. Locations module

Module Identifier: locations

Data owner: CPO

The Location objects live in the CPO back-end system. They describe the charging locations of that operator.

Module dependency: the eMSP endpoint is dependent on the Tariffs module

7.1. Flow and Lifecycle

The Locations module has Locations as base object, Locations have EVSEs, EVSEs have Connectors. With the methods in the

eMSP interface, Location information/statuses can be shared with the eMSP. Updates can be done to the Location, but also to only

an EVSE or a Connector.

When a CPO creates Location objects it pushes them to the eMSPs by calling PUT on the eMSPs Locations endpoint. Providers

who do not support push mode need to call GET on the CPOs Locations endpoint to receive the new object.

If the CPO wants to replace a Location related object, they push it to the eMSP systems by calling PUT on their Locations endpoint.

Any changes to a Location related object can also be pushed to the eMSP by calling the PATCH on the eMSPs Locations endpoint.

Providers who do not support push mode need to call GET on the CPOs Locations endpoint to receive the updates.

When the CPO wants to delete an EVSE they must update by setting the status field to REMOVED and call the PUT or PATCH on

the eMSP system. A Location without valid EVSE objects can be considered as expired and should no longer be displayed. There

is no direct way to delete a location, EVSE or Connector, there are other modules like sessions that link to location, EVSE and

Connector IDs. If they were removed, these links would no longer work.

When the CPO is not sure about the state or existence of a Location, EVSE or Connector object in the eMSPs system, the CPO

can call the GET to validate the object in the eMSP system.

7.2. Interfaces and endpoints

There is both a CPO and an eMSP interface for Locations. Advised is to use the push direction from CPO to eMSP during normal

operation. The CPO interface is meant to be used when the connection between 2 parties is established, to retrieve the current list

of Location objects with the current status, and when the eMSP is not 100% sure the Locations cache is completely correct. The

eMSP can use the CPO GET Object interface to retrieve a specific Location, EVSE or Connector, this might be used by a eMSP

that wants information about a specific Location, but has not implemented the eMSP Locations interface (cannot receive push).

7.2.1. CPO Interface

Method Description

GET Fetch a list locations, last updated between the {date_from} and {date_to} (paginated), or get a specific
location, EVSE or Connector.

POST n/a

PUT n/a

PATCH n/a

DELETE n/a

7.2.1.1. GET Method

Depending on the URL Segments provided, the GET request can either be used to retrieve information about a list of available

locations and EVSEs at this CPO: GET List Or it can be used to get information about a specific Location, EVSE or Connector:

OCPI 2.2-RC1

32



GET Object

GET List Request Parameters

Endpoint structure definition:

{locations_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={l

imit}]

Examples:

https://www.server.com/ocpi/cpo/2.2/locations/?date_from=2019-01-28T12:00:00&date_to=2019-01-

29T12:00:00

https://ocpi.server.com/2.2/locations/?offset=50

https://www.server.com/ocpi/2.2/locations/?date_from=2019-01-29T12:00:00&limit=100

https://www.server.com/ocpi/cpo/2.2/locations/?offset=50&amp;limit=100

If additional parameters: {date_from} and/or {date_to} are provided, only Locations with (last_updated) between the given

date_from and date_to will be returned. If an EVSE is updated, also the 'parent' Location’s last_updated fields is updated. If a

Connector is updated, the EVSE’s last_updated and the Location’s last_updated field are updated.

This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Requi
red

Description

date_from DateTime no Only return Locations that have last_updated after this Date/Time.

date_to DateTime no Only return Locations that have last_updated before this Date/Time.

offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

GET List Response Data

The endpoint returns a list of Location objects the header will contain the pagination related headers.

Any older information that is not specified in the response is considered no longer valid. Each object must contain all required fields.

Fields that are not specified may be considered as null values.

Type Card. Description

Location * List of all locations with valid EVSEs.

GET Object Request Parameters

Endpoint structure definition for retrieving a Location, EVSE or Connector:

{locations_endpoint_url}{location_id}[/{evse_uid}][/{connector_id}]

Examples:

https://www.server.com/ocpi/cpo/2.2/locations/LOC1

https://www.server.com/ocpi/cpo/2.2/locations/LOC1/3256

https://www.server.com/ocpi/cpo/2.2/locations/LOC1/3256/1

The following parameters can be provided as URL segments.

OCPI 2.2-RC1

33



Parameter Datatype Requi
red

Description

location_id CiString(36) yes Location.id of the Location object to retrieve.

evse_uid CiString(36) no Evse.uid, required when requesting an EVSE or Connector object.

connector_id CiString(36) no Connector.id, required when requesting a Connector object.

GET Object Response Data

The response contains the requested object.

Type Card. Description

Choice: one of three

> Location 1 If a Location object was requested: the Location object.

> Location 1 If an EVSE object was requested: the EVSE object.

> Connector 1 If a Connector object was requested: the Connector object.

7.2.1.2. eMSP Interface

Locations is a client owned object, so the end-points need to contain the required extra fields: {party_id} and {country_code}.

Endpoint structure definition:

{locations_endpoint_url}{country_code}/{party_id}/{location_id}[/{evse_uid}][/{connector_id}]

Examples:

https://www.server.com/ocpi/emsp/2.2/locations/BE/BEC/LOC1

https://server.com/ocpi/2.2/locations/BE/BEC/LOC1/3256

https://ocpi.server.com/2.2/locations/BE/BEC/LOC1/3256/1

Method Description

GET Retrieve a Location as it is stored in the eMSP system.

POST n/a (use PUT)

PUT Push new/updated Location, EVSE and/or Connectors to the eMSP

PATCH Notify the eMSP of partial updates to a Location, EVSEs or Connector (such as the status).

DELETE n/a (use PATCH)

7.2.1.3. GET Method

If the CPO wants to check the status of a Location, EVSE or Connector object in the eMSP system, it might GET the object from

the eMSP system for validation purposes. The CPO is the owner of the objects, so it would be illogical if the eMSP system had a

different status or was missing an object. If a discrepancy is found, the CPO might push an update to the eMSP via a PUT or

PATCH call.

Request Parameters

The following parameters can be provided as URL segments.

OCPI 2.2-RC1

34



Parameter Datatype Requi
red

Description

country_code CiString(2) yes Country code of the CPO requesting this PUT to the eMSP system.

party_id CiString(3) yes Party ID (Provider ID) of the CPO requesting this PUT to the eMSP system.

location_id CiString(36) yes Location.id of the Location object to retrieve.

evse_uid CiString(36) no Evse.uid, required when requesting an EVSE or Connector object.

connector_id CiString(36) no Connector.id, required when requesting a Connector object.

Response Data

The response contains the requested object.

Type Card. Description

Choice: one of three

> Location 1 If a Location object was requested: the Location object.

> Location 1 If an EVSE object was requested: the EVSE object.

> Connector 1 If a Connector object was requested: the Connector object.

7.2.1.4. PUT Method

The CPO pushes available Location/EVSE or Connector objects to the eMSP. PUT is used to send new Location objects to the

eMSP, or to replace existing Locations.

Request Parameters

This is an information push message, the objects pushed will not be owned by the eMSP. To make distinctions between objects

being pushed to an eMSP from different CPOs, the {party_id} and {country_code} have to be included in the URL, as URL

segments.

Parameter Datatype Requi
red

Description

country_code CiString(2) yes Country code of the CPO requesting this PUT to the eMSP system.

party_id CiString(3) yes Party ID (Provider ID) of the CPO requesting this PUT to the eMSP system.

location_id CiString(36) yes Location.id of the new Location object, or the Location of which an EVSE or
Location object is send

evse_uid CiString(36) no Evse.uid, required when an EVSE or Connector object is send/replaced.

connector_id CiString(36) no Connector.id, required when a Connector object is send/replaced.

Request Body

The request contains the new/updated object.

Type Card. Description

Choice: one of three

> Location 1 New Location object, or Location object to replace.

> Location 1 New EVSE object, or EVSE object to replace.

> Connector 1 New Connector object, or Connector object to replace.

OCPI 2.2-RC1

35



7.2.1.5. PATCH Method

Same as the PUT method, but only the fields/objects that have to be updated have to be present, other fields/objects that are not

specified are considered unchanged.

Example: a simple status update

This is the most common type of update message to notify eMSPs that an EVSE (EVSE with uid 3255 of Charge Point 1012) is

now occupied.

PATCH To URL: https://www.server.com/ocpi/emsp/2.2/locations/NL/TNM/1012/3255

{
  "status": "CHARGING"
}

Example: change the location name

In this example the name of location 1012 is updated.

PATCH To URL: https://www.server.com/ocpi/emsp/2.2/locations/NL/TNM/1012

{
  "name": "Interparking Gent Zuid"
}

Example: set tariff update

In this example connector 2 of EVSE 1 of Charge Point 1012, receives a new pricing scheme.

PATCH To URL: https://www.server.com/ocpi/emsp/2.2/locations/NL/TNM/1012/3255/2

{
  "tariff_id": "15"
}

Example: add an EVSE

To add an EVSE, simply put the full object in an update message, including all its required fields. Since the id is new, the receiving

party will know that it is a new object. When not all required fields are specified, the object may be discarded.

PUT To URL: https://www.server.com/ocpi/emsp/2.2/locations/NL/TNM/1012/3256

{
  "uid": "3256",
  "evse_id": "BE*BEC*E041503003",
  "status": "AVAILABLE",
  "capabilities": ["RESERVABLE"],
  "connectors": [
    {
      "id": "1",
      "standard": "IEC_62196_T2",
      "format": "SOCKET",
      "tariff_id": "14"
    }
  ],
  "physical_reference": 3,
  "floor": -1
}

OCPI 2.2-RC1

36



Example: delete an EVSE

An EVSE can be deleted by updating its status property.

PATCH To URL: https://www.server.com/ocpi/emsp/2.2/locations/NL/TNM/1012/3256

{
  "status": "REMOVED"
}

Note: To inform that an EVSE is scheduled for removal, the status_schedule field can be used.

7.3. Object description

Location, EVSE and Connector have the following relation.

Locations class diagram

Location

EVSE

Connector

1

0..n

1

1..n

Figure 8. Location class diagram

7.3.1. Location Object

The Location object describes the location and its properties where a group of EVSEs that belong together are installed. Typically

the Location object is the exact location of the group of EVSEs, but it can also be the entrance of a parking garage which contains

these EVSEs. The exact way to reach each EVSE can be further specified by its own properties.

Property Type Card. Description

id CiString(36) 1 Uniquely identifies the location within the CPOs platform (and
suboperator platforms). This field can never be changed,
modified or renamed.

type LocationType 1 The general type of the charge point location.

name string(255) ? Display name of the location.

address string(45) 1 Street/block name and house number if available.

city string(45) 1 City or town.

postal_code string(10) ? Postal code of the location, may only be omitted when the
location has no postal code: in some countries charging
location at highways don’t have postal codes.

state string(20) ? State or Province of the location, only use when relevant.

country string(3) 1 ISO 3166-1 alpha-3 code for the country of this location.

OCPI 2.2-RC1

37



Property Type Card. Description

coordinates GeoLocation 1 Coordinates of the location.

related_locations AdditionalGeoLocation * Geographical location of related points relevant to the user.

evses Location * List of EVSEs that belong to this Location.

directions DisplayText * Human-readable directions on how to reach the location.

operator BusinessDetails ? Information of the operator. When not specified, the information
retrieved from the Credentials module should be used instead.

suboperator BusinessDetails ? Information of the suboperator if available.

owner BusinessDetails ? Information of the owner if available.

facilities Facility * Optional list of facilities this charge location directly belongs to.

time_zone string(255) ? One of IANA tzdata’s TZ-values representing the time zone of
the location. Examples: "Europe/Oslo", "Europe/Zurich".
(http://www.iana.org/time-zones)

opening_times Hours ? The times when the EVSEs at the location can be accessed for
charging.

charging_when_closed boolean ? Indicates if the EVSEs are still charging outside the opening
hours of the location. E.g. when the parking garage closes its
barriers over night, is it allowed to charge till the next morning?
Default: true

images Image * Links to images related to the location such as photos or logos.

energy_mix EnergyMix ? Details on the energy supplied at this location.

last_updated DateTime 1 Timestamp when this Location or one of its EVSEs or
Connectors were last updated (or created).

7.3.1.1. Example

OCPI 2.2-RC1

38

http://www.iana.org/time-zones


{
  "id": "LOC1",
  "type": "ON_STREET",
  "name": "Gent Zuid",
  "address": "F.Rooseveltlaan 3A",
  "city": "Gent",
  "postal_code": "9000",
  "country": "BEL",
  "coordinates": {
    "latitude": "51.047599",
    "longitude": "3.729944"
  },
  "evses": [{
    "uid": "3256",
    "evse_id": "BE*BEC*E041503001",
    "status": "AVAILABLE",
    "status_schedule": [],
    "capabilities": [
      "RESERVABLE"
    ],
    "connectors": [{
      "id": "1",
      "standard": "IEC_62196_T2",
      "format": "CABLE",
      "power_type": "AC_3_PHASE",
      "voltage": 220,
      "amperage": 16,
      "tariff_id": "11",
      "last_updated": "2015-03-16T10:10:02Z"
    }, {
      "id": "2",
      "standard": "IEC_62196_T2",
      "format": "SOCKET",
      "power_type": "AC_3_PHASE",
      "voltage": 220,
      "amperage": 16,
      "tariff_id": "11",
      "last_updated": "2015-03-18T08:12:01Z"
    }],
    "physical_reference": "1",
    "floor_level": "-1",
    "last_updated": "2015-06-28T08:12:01Z"
  }, {
    "uid": "3257",
    "evse_id": "BE*BEC*E041503002",
    "status": "RESERVED",
    "capabilities": [
      "RESERVABLE"
    ],
    "connectors": [{
      "id": "1",
      "standard": "IEC_62196_T2",
      "format": "SOCKET",
      "power_type": "AC_3_PHASE",
      "voltage": 220,
      "amperage": 16,
      "tariff_id": "12",
      "last_updated": "2015-06-29T20:39:09Z"
    }],
    "physical_reference": "2",
    "floor_level": "-2",
    "last_updated": "2015-06-29T20:39:09Z"
  }],
  "operator": {
    "name": "BeCharged"
  },
  "last_updated": "2015-06-29T20:39:09Z"
}

7.3.2. EVSE Object

The EVSE object describes the part that controls the power supply to a single EV in a single session. It always belongs to a

OCPI 2.2-RC1

39



Location object. It will only contain directions to get from the location to the EVSE (i.e. floor, physical_reference or directions). When

these properties are insufficient to reach the EVSE from the Location point, then it typically indicates that this EVSE should be put

in a different Location object (sometimes with the same address but with different coordinates/directions).

An EVSE object has a list of connectors which can not be used simultaneously: only one connector per EVSE can be used at the

time.

Property Type Card. Description

uid CiString(36) 1 Uniquely identifies the EVSE within the CPOs platform (and
suboperator platforms). For example a database unique ID or the
"EVSE ID". This field can never be changed, modified or renamed. This
is the 'technical' identification of the EVSE, not to be used as 'human
readable' identification, use the field: evse_id for that.
This field is named uid instead of id, because id could be confused
with evse_id which is a eMI3 defined field.

evse_id CiString(48) ? Compliant with the following specification for EVSE ID from "eMI3
standard version V1.0" (http://emi3group.com/documents-links/) "Part 2:
business objects." Optional because: if an EVSE ID is to be re-used the
EVSE ID can be removed from an EVSE that is removed (status:
REMOVED)

status Status 1 Indicates the current status of the EVSE.

status_schedule StatusSchedule * Indicates a planned status in the future of the EVSE.

capabilities Capability * List of functionalities that the EVSE is capable of.

connectors Connector + List of available connectors on the EVSE.

floor_level string(4) ? Level on which the charging station is located (in garage buildings) in
the locally displayed numbering scheme.

coordinates GeoLocation ? Coordinates of the EVSE.

physical_reference string(16) ? A number/string printed on the outside of the EVSE for visual
identification.

directions DisplayText * Multi-language human-readable directions when more detailed
information on how to reach the EVSE from the Location is required.

parking_restrictions ParkingRestriction * The restrictions that apply to the parking spot.

images Image * Links to images related to the EVSE such as photos or logos.

last_updated DateTime 1 Timestamp when this EVSE or one of its Connectors was last updated
(or created).

7.3.3. Connector Object

A connector is the socket or cable available for the EV to use. A single EVSE may provide multiple connectors but only one of them

can be in use at the same time. A connector always belongs to an EVSE object.

Property Type Card. Description

id CiString(36) 1 Identifier of the connector within the EVSE. Two connectors may have
the same id as long as they do not belong to the same EVSE object.

standard ConnectorType 1 The standard of the installed connector.

format ConnectorFormat 1 The format (socket/cable) of the installed connector.

power_type PowerType 1

voltage int 1 Voltage of the connector (line to neutral for AC_3_PHASE), in volt [V].

amperage int 1 maximum amperage of the connector, in ampere [A].

OCPI 2.2-RC1

40

http://emi3group.com/documents-links/


Property Type Card. Description

max_electric_power int ? Maximum electric power that can be delivered by this connector, in watt
[W]. When the maximum electric power is lower then the calculated
value from: voltage and amperage, this value should be set.
For example: A Charge Point which can deliver up to 920V, up to 400A,
but max. 150kW. Depending on the car, it may supply max voltage or
current, but not both.

tariff_ids CiString(36) * Identifiers of the current valid charging tariffs. Multiple tariffs are
possible, but each require a unique Tariff.type, duplicates not allowed.
When Preference based Smart Charging is supported, on tariff for every
possible ProfileType should be provided, these tell the Driver the options
he has at this Connector, and what the tariff is for every option.
For a "Free of Charge" tariff this field should be set, and point to a
defined "Free of Charge" tariff.

terms_and_conditions URL ? URL to the operator’s terms and conditions.

last_updated DateTime 1 Timestamp when this Connectors was last updated (or created).

7.4. Data types

7.4.1. AdditionalGeoLocation class

This class defines a geo location. The geodetic system to be used is WGS 84.

Property Type Card. Description

latitude string(10) 1 Latitude of the point in decimal degree. Example: 50.770774. Decimal
separator: "." Regex: -?[0-9]{1,2}\.[0-9]{5,7}

longitude string(11) 1 Longitude of the point in decimal degree. Example: -126.104965. Decimal
separator: "." Regex: -?[0-9]{1,3}\.[0-9]{5,7}

name DisplayText ? Name of the point in local language or as written at the location. For example
the street name of a parking lot entrance or it’s number.

7.4.2. BusinessDetails class

Property Type Card. Description

name string(100) 1 Name of the operator.

website URL ? Link to the operator’s website.

logo Image ? Image link to the operator’s logo.

7.4.3. Capability enum

The capabilities of an EVSE.

Value Description

CHARGING_PROFILE_CAPABLE The EVSE supports charging profiles.

CHARGING_PREFERENCES_CAPABLE The EVSE supports charging preferences.

CREDIT_CARD_PAYABLE Charging at this EVSE can be payed with a credit card.

DEBIT_CARD_PAYABLE Charging at this EVSE can be payed with a debit card.

REMOTE_START_STOP_CAPABLE The EVSE can remotely be started/stopped.

RESERVABLE The EVSE can be reserved.

RFID_READER Charging at this EVSE can be authorized with a RFID token

OCPI 2.2-RC1

41



Value Description

TOKEN_GROUP_CAPABLE This EVSE supports token groups, two or more tokens work as one, so that a
session can be started with one token and stopped with another, handy when a
card and key-fob are given to the EV-driver.

UNLOCK_CAPABLE Connectors have mechanical lock that can be requested by the eMSP to be
unlocked.

7.4.4. ConnectorFormat enum

The format of the connector, whether it is a socket or a plug.

Value Description

SOCKET The connector is a socket; the EV user needs to bring a fitting plug.

CABLE The connector is an attached cable; the EV users car needs to have a fitting inlet.

7.4.5. ConnectorType enum

The socket or plug standard of the charging point.

Value Description

CHADEMO The connector type is CHAdeMO, DC

DOMESTIC_A Standard/Domestic household, type "A", NEMA 1-15, 2 pins

DOMESTIC_B Standard/Domestic household, type "B", NEMA 5-15, 3 pins

DOMESTIC_C Standard/Domestic household, type "C", CEE 7/17, 2 pins

DOMESTIC_D Standard/Domestic household, type "D", 3 pin

DOMESTIC_E Standard/Domestic household, type "E", CEE 7/5 3 pins

DOMESTIC_F Standard/Domestic household, type "F", CEE 7/4, Schuko, 3 pins

DOMESTIC_G Standard/Domestic household, type "G", BS 1363, Commonwealth, 3 pins

DOMESTIC_H Standard/Domestic household, type "H", SI-32, 3 pins

DOMESTIC_I Standard/Domestic household, type "I", AS 3112, 3 pins

DOMESTIC_J Standard/Domestic household, type "J", SEV 1011, 3 pins

DOMESTIC_K Standard/Domestic household, type "K", DS 60884-2-D1, 3 pins

DOMESTIC_L Standard/Domestic household, type "L", CEI 23-16-VII, 3 pins

IEC_60309_2_single_16 IEC 60309-2 Industrial Connector single phase 16 Amperes (usually blue)

IEC_60309_2_three_16 IEC 60309-2 Industrial Connector three phase 16 Amperes (usually red)

IEC_60309_2_three_32 IEC 60309-2 Industrial Connector three phase 32 Amperes (usually red)

IEC_60309_2_three_64 IEC 60309-2 Industrial Connector three phase 64 Amperes (usually red)

IEC_62196_T1 IEC 62196 Type 1 "SAE J1772"

IEC_62196_T1_COMBO Combo Type 1 based, DC

IEC_62196_T2 IEC 62196 Type 2 "Mennekes"

IEC_62196_T2_COMBO Combo Type 2 based, DC

IEC_62196_T3A IEC 62196 Type 3A

IEC_62196_T3C IEC 62196 Type 3C "Scame"

TESLA_R Tesla Connector "Roadster"-type (round, 4 pin)

TESLA_S Tesla Connector "Model-S"-type (oval, 5 pin)

OCPI 2.2-RC1

42



7.4.6. EnergyMix class

This type is used to specify the energy mix and environmental impact of the supplied energy at a location or in a tariff.

Property Type Card. Description

is_green_energy boolean 1 True if 100% from regenerative sources. (CO2 and nuclear waste is
zero)

energy_sources EnergySource * Key-value pairs (enum + percentage) of energy sources of this
location’s tariff.

environ_impact EnvironmentalImpact * Key-value pairs (enum + percentage) of nuclear waste and CO2
exhaust of this location’s tariff.

supplier_name string(64) ? Name of the energy supplier, delivering the energy for this location or
tariff.*

energy_product_name string(64) ? Name of the energy suppliers product/tariff plan used at this location.*

* These fields can be used to look-up energy qualification or to show it directly to the customer (for well-known brands like

Greenpeace Energy, etc.)

7.4.6.1. Examples

Simple:

  "energy_mix": {
    "is_green_energy": true
  }

Tariff energy provider name:

  "energy_mix": {
    "is_green_energy": true,
    "supplier_name": "Greenpeace Energy eG",
    "energy_product_name": "eco-power"
  }

Complete:

  "energy_mix": {
    "is_green_energy": false,
    "energy_sources": [
    { "source": "GENERAL_GREEN",  "percentage": 35.9 },
    { "source": "GAS",            "percentage": 6.3  },
    { "source": "COAL",           "percentage": 33.2 },
    { "source": "GENERAL_FOSSIL", "percentage": 2.9  },
    { "source": "NUCLEAR",        "percentage": 21.7 }
    ],
    "environ_impact": [
    { "source": "NUCLEAR_WASTE",  "amount": 0.0006   },
    { "source": "CARBON_DIOXIDE", "amount": 372      }
    ],
    "supplier_name":       "E.ON Energy Deutschland",
    "energy_product_name": "E.ON DirektStrom eco"
  }

7.4.7. EnergySource class

Key-value pairs (enum + percentage) of energy sources. All given values should add up to 100 percent per category.

OCPI 2.2-RC1

43



Property Type Card. Description

source EnergySourceCategory 1 The type of energy source.

percentage number 1 Percentage of this source (0-100) in the mix.

7.4.8. EnergySourceCategory enum

Categories of energy sources.

Value Description

NUCLEAR Nuclear power sources.

GENERAL_FOSSIL All kinds of fossil power sources.

COAL Fossil power from coal.

GAS Fossil power from gas.

GENERAL_GREEN All kinds of regenerative power sources.

SOLAR Regenerative power from PV.

WIND Regenerative power from wind turbines.

WATER Regenerative power from water turbines.

7.4.9. EnvironmentalImpact class

Amount of waste produced/emitted per kWh.

Property Type Card. Description

category EnvironmentalImpactCategory 1 The environmental impact category of this value.

amount number 1 Amount of this portion in g/kWh.

7.4.10. EnvironmentalImpactCategory enum

Categories of environmental impact values.

Value Description

NUCLEAR_WASTE Produced nuclear waste in grams per kilowatthour.

CARBON_DIOXIDE Exhausted carbon dioxide in grams per kilowatthour.

7.4.11. ExceptionalPeriod class

Specifies one exceptional period for opening or access hours.

Property Type Card. Description

period_begin DateTime 1 Begin of the exception.

period_end DateTime 1 End of the exception.

7.4.12. Facility enum

Value Description

HOTEL A hotel.

OCPI 2.2-RC1

44



Value Description

RESTAURANT A restaurant.

CAFE A cafe.

MALL A mall or shopping center.

SUPERMARKET A supermarket.

SPORT Sport facilities: gym, field etc.

RECREATION_AREA A Recreation area.

NATURE Located in, or close to, a park, nature reserve/park etc.

MUSEUM A museum.

BUS_STOP A bus stop.

TAXI_STAND A taxi stand.

TRAIN_STATION A train station.

AIRPORT An airport.

CARPOOL_PARKING A carpool parking.

FUEL_STATION A Fuel station.

WIFI Wifi or other type of internet available.

7.4.13. GeoLocation class

Property Type Card. Description

latitude string(10) 1 Latitude of the point in decimal degree. Example: 50.770774. Decimal
separator: "." Regex: -?[0-9]{1,2}\.[0-9]{5,7}

longitude string(11) 1 Longitude of the point in decimal degree. Example: -126.104965. Decimal
separator: "." Regex: -?[0-9]{1,3}\.[0-9]{5,7}

NOTE
Five decimal places is seen as a minimal for GPS coordinates for Charging Stations, this gives approximately 1

meter precision. More is always better. Seven decimal places gives approximately 1cm precision.

7.4.14. Hours class

Opening and access hours of the location.

Property Type Card. Description

twentyfourseven boolean 1 True to represent 24 hours a day and 7 days a week, except the given
exceptions.

regular_hours RegularHours * Regular hours, weekday-based. Only to be used if
twentyfourseven=false.

exceptional_openings ExceptionalPeriod * Exceptions for specified calendar dates, time-range based. Periods the
station is operating/accessible. Additional to regular hours. May overlap
regular rules.

exceptional_closings ExceptionalPeriod * Exceptions for specified calendar dates, time-range based. Periods the
station is not operating/accessible. Overwriting regularHours and
exceptionalOpenings. Should not overlap exceptionalOpenings.

7.4.15. Image class

This class references images related to a EVSE in terms of a file name or url. According to the roaming connection between one

EVSE Operator and one or more Navigation Service Providers the hosting or file exchange of image payload data has to be

OCPI 2.2-RC1

45



defined. The exchange of this content data is out of scope of OCHP. However, the recommended setup is a public available web

server hosted and updated by the EVSE Operator. Per charge point an unlimited number of images of each type is allowed.

Recommended are at least two images where one is a network or provider logo and the second is a station photo. If two images of

the same type are defined they should be displayed additionally, not optionally.

Photo Dimensions: The recommended dimensions for all photos is a minimum of 800 pixels wide and 600 pixels height. Thumbnail

representations for photos should always have the same orientation as the original with a size of 200 to 200 pixels.

Logo Dimensions: The recommended dimensions for logos are exactly 512 pixels wide and 512 pixels height. Thumbnail

representations for logos should be exactly 128 pixels in width and height. If not squared, thumbnails should have the same

orientation as the original.

Property Type Card. Description

url URL 1 URL from where the image data can be fetched through a web browser.

thumbnail URL ? URL from where a thumbnail of the image can be fetched through a
webbrowser.

category ImageCategory 1 Describes what the image is used for.

type string(4) 1 Image type like: gif, jpeg, png, svg

width int(5) ? Width of the full scale image

height int(5) ? Height of the full scale image

7.4.16. ImageCategory enum

The category of an image to obtain the correct usage in a user presentation. The category has to be set accordingly to the image

content in order to guarantee the right usage.

Value Description

CHARGER Photo of the physical device that contains one or more EVSEs.

ENTRANCE Location entrance photo. Should show the car entrance to the location from street side.

LOCATION Location overview photo.

NETWORK logo of an associated roaming network to be displayed with the EVSE for example in lists, maps
and detailed information view

OPERATOR logo of the charge points operator, for example a municipality, to be displayed with the EVSEs
detailed information view or in lists and maps, if no networkLogo is present

OTHER Other

OWNER logo of the charge points owner, for example a local store, to be displayed with the EVSEs detailed
information view

7.4.17. LocationType enum

Reflects the general type of the charge points location. May be used for user information.

Value Description

ON_STREET Parking in public space.

PARKING_GARAGE Multistorey car park.

UNDERGROUND_GARAGE Multistorey car park, mainly underground.

PARKING_LOT A cleared area that is intended for parking vehicles, i.e. at super markets, bars, etc.

OTHER None of the given possibilities.

UNKNOWN Parking location type is not known by the operator (default).

OCPI 2.2-RC1

46



7.4.18. ParkingRestriction enum

This value, if provided, represents the restriction to the parking spot for different purposes.

Value Description

EV_ONLY Reserved parking spot for electric vehicles.

PLUGGED Parking is only allowed while plugged in (charging).

DISABLED Reserved parking spot for disabled people with valid ID.

CUSTOMERS Parking spot for customers/guests only, for example in case of a hotel or shop.

MOTORCYCLES Parking spot only suitable for (electric) motorcycles or scooters.

7.4.19. PowerType enum

Value Description

AC_1_PHASE AC mono phase.

AC_3_PHASE AC 3 phase.

DC Direct Current.

7.4.20. RegularHours class

Regular recurring operation or access hours

Property Type Card. Description

weekday int(1) 1 Number of day in the week, from Monday (1) till Sunday (7)

period_begin string(5) 1 Begin of the regular period given in hours and minutes. Must be in 24h format
with leading zeros. Example: "18:15". Hour/Minute separator: ":" Regex: [0-2][0-
9]:[0-5][0-9]

period_end string(5) 1 End of the regular period, syntax as for period_begin. Must be later than
period_begin.

7.4.20.1. Example

Operating on weekdays from 8am till 8pm with one exceptional opening on 22/6/2014 and one exceptional closing the Monday

after:

OCPI 2.2-RC1

47



  "opening_times": {
    "regular_hours": [
      {
        "weekday": 1,
        "period_begin": "08:00",
        "period_end": "20:00"
      },
      {
        "weekday": 2,
        "period_begin": "08:00",
        "period_end": "20:00"
      },
      {
        "weekday": 3,
        "period_begin": "08:00",
        "period_end": "20:00"
      },
      {
        "weekday": 4,
        "period_begin": "08:00",
        "period_end": "20:00"
      },
      {
        "weekday": 5,
        "period_begin": "08:00",
        "period_end": "20:00"
      }
    ],
    "twentyfourseven": false,
    "exceptional_openings": [
      {
        "period_begin": "2014-06-21T09:00:00Z",
        "period_end": "2014-06-21T12:00:00Z"
      }
    ],
    "exceptional_closings": [
      {
        "period_begin": "2014-06-24T00:00:00Z",
        "period_end": "2014-06-25T00:00:00Z"
      }
    ]
  }

This represents the following schedule, where stroked out days are without operation hours, bold days are where exceptions apply

and regular displayed days are where the regular schedule applies.

Week
day

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

Date 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Open
from

08 08 08 08 08 09 - 08 - 08 08 08 - -

Open
till

20 20 20 20 20 12 - 20 - 20 20 20 - -

7.4.21. Status enum

The status of an EVSE.

Value Description

AVAILABLE The EVSE/Connector is able to start a new charging session.

BLOCKED The EVSE/Connector is not accessible because of a physical barrier, i.e. a car.

CHARGING The EVSE/Connector is in use.

INOPERATIVE The EVSE/Connector is not yet active or it is no longer available (deleted).

OCPI 2.2-RC1

48



Value Description

OUTOFORDER The EVSE/Connector is currently out of order.

PLANNED The EVSE/Connector is planned, will be operating soon

REMOVED The EVSE/Connector/charge point is discontinued/removed.

RESERVED The EVSE/Connector is reserved for a particular EV driver and is unavailable for other drivers.

UNKNOWN No status information available. (Also used when offline)

7.4.22. StatusSchedule class

This type is used to schedule status periods in the future. The eMSP can provide this information to the EV user for trip planning

purpose. A period MAY have no end. Example: "This station will be running as of tomorrow. Today it is still planned and under

construction."

Property Type Card. Description

period_begin DateTime 1 Begin of the scheduled period.

period_end DateTime ? End of the scheduled period, if known.

status Status 1 Status value during the scheduled period.

Note that the scheduled status is purely informational. When the status actually changes, the CPO must push an update to the

EVSEs status field itself.

OCPI 2.2-RC1

49



8. Sessions module

Module Identifier: sessions

Data owner: CPO

The Session object describes one charging session. The Session object is owned by the CPO back-end system, and can be GET

from the CPO system, or pushed by the CPO to another system.

8.1. Flow and Lifecycle

8.1.1. Push model

When the CPO creates a Session object they push it to the eMSPs by calling PUT on the eMSPs Sessions endpoint with the newly

created Session object.

Any changes to a Session in the CPO system are sent to the eMSP system by calling PATCH on the eMSPs Sessions endpoint

with the updated Session object.

Sessions cannot be deleted, final status of a session is: COMPLETED.

When the CPO is not sure about the state or existence of a Session object in the eMSPs system, the CPO can call the GET to

validate the Session object in the eMSP system.

8.1.2. Pull model

eMSPs who do not support the push model need to call GET on the CPOs Sessions endpoint to receive a list of Sessions.

This GET can also be used, combined with the Push model to retrieve Sessions after the system (re)connects to a CPO, to get a

list Sessions 'missed' during a time offline.

8.1.3. Set charging preferences

For a lot of smart charging use cases, input from the driver is needed. The smart charging algorithms need to be able to give

certain session priority over others, need to know how much energy an EV needs before what time. Via a PUT on the CPO

Interface, during an ongoing session, the eMSP can send Charging Preferences for the driver. Indicating the preferences of the

driver to the CPO.

The eMSP can determine if an EVSE supports Charging Preferences by checking if the EVSE capabilities contains:

CHARGING_PREFERENCES_CAPABLE.

Via Tariffs the CPO can give different preferences different prices. A Connector can have multiple Tariffs one for each ProfileType.

8.2. Interfaces and endpoints

8.2.1. CPO Interface

Method Description

GET Fetch Session objects of charging sessions last updated between the {date_from} and {date_to} (paginated)

POST n/a

PUT Setting charging preferences on an ongoing session.

PATCH n/a

OCPI 2.2-RC1

50



Method Description

DELETE n/a

8.2.1.1. GET Method

Fetch Sessions from the CPO systems.

Endpoint structure definition:

{sessions_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={li

mit}]

Examples:

https://www.server.com/ocpi/cpo/2.2/sessions/?date_from=2019-01-28T12:00:00&date_to=2019-01-

29T12:00:00

https://ocpi.server.com/2.2/sessions/?offset=50

https://www.server.com/ocpi/2.2/sessions/?date_from=2019-01-29T12:00:00&limit=100

https://www.server.com/ocpi/cpo/2.2/sessions/?offset=50&amp;limit=100

Request Parameters

Only Sessions with last_update between the given {date_from} and {date_to} will be returned.

This request is paginated, so also supports the pagination related URL parameters.

Parameter Datatype Requi
red

Description

date_from DateTime yes Only return Sessions that have last_updated after this Date/Time.

date_to DateTime no Only return Sessions that have last_updated before this Date/Time.

offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

Response Data

The response contains a list of Session objects that match the given parameters in the request, the header will contain the

pagination related headers.

Any older information that is not specified in the response is considered as no longer valid. Each object must contain all required

fields. Fields that are not specified may be considered as null values.

Datatype Card. Description

Session * List of Session objects that match the
request parameters

8.2.1.2. PUT Method

Set/update the drivers Charging Preferences for this charging session.

Endpoint structure definition:

{sessions_endpoint_url}{session_id}/charging_preferences

OCPI 2.2-RC1

51



Examples:

https://www.server.com/ocpi/cpo/2.2/sessions/1234/charging_preferences

The /charging_preferences is required when setting Charging Preferences.

Request Parameters

The following parameter has to be provided as URL segments.

Parameter Datatype Requi
red

Description

session_id CiString(36) yes Session.id of the Session on which these Charging Preferences are to be set.

Request Body

In the body a ChargingPreferences object has to be provided.

Type Card. Description

ChargingPreferences 1 Updated Charging preferences for the driver for this Session.

Response Data

The endpoint response contains a ChargingPreferencesResponse value.

Type Card. Description

ChargingPreferencesRespon
se

1 Response to the Charging Preferences PUT request.

8.2.1.3. eMSP Interface

Sessions is a client owned object, so the end-points need to contain the required extra fields: {party_id} and {country_code}.

Endpoint structure definition:

{sessions_endpoint_url}{country_code}/{party_id}/{session_id}

Example:

https://www.server.com/ocpi/cpo/2.2/sessions/BE/BEC/1234

Method Description

GET Get the Session object from the eMSP system by its id {session_id}.

POST n/a

PUT Send a new/updated Session object

PATCH Update the Session object of id {session_id}.

DELETE n/a

8.2.1.4. GET Method

The CPO system might request the current version of a Session object from the eMSP system for, for example validation purposes,

or the CPO system might have received a error on a PATCH.

OCPI 2.2-RC1

52



Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requi
red

Description

country_code CiString(2) yes Country code of the CPO requesting this GET to the eMSP system.

party_id CiString(3) yes Party ID (Provider ID) of the CPO requesting this GET to the eMSP system.

session_id CiString(36) yes id of the Session object to get from the eMSP system.

Response Data

The response contains the request Session object, if available.

Datatype Card. Description

Session 1 Session object requested.

8.2.1.5. PUT Method

Inform the system about a new/updated session in the eMSP backoffice by PUTing a Session object.

Request Body

The request contains the new or updated Session object.

Type Card. Description

Session 1 new Session object.

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requi
red

Description

country_code CiString(2) yes Country code of the CPO requesting this PUT to the eMSP system.

party_id CiString(3) yes Party ID (Provider ID) of the CPO requesting this PUT to the eMSP system.

session_id CiString(36) yes id of the new or updated Session object.

8.2.1.6. PATCH Method

Same as the PUT method, but only the fields/objects that have to be updated have to be present, other fields/objects that are not

specified are considered unchanged.

Example: update the total cost

PATCH To URL: https://www.server.com/ocpi/cpo/2.2/sessions/NL/TNM/101

{
  "total_cost": {
    "excl_vat": 0.60,
    "incl_vat": 0.66
  }
}

OCPI 2.2-RC1

53



8.3. Object description

8.3.1. Session Object

Property Type Card. Description

id CiString(36) 1 The unique id that identifies the session in the CPO platform.

start_datetime DateTime 1 The time when the session became active.

end_datetime DateTime ? The time when the session is completed.

kwh number 1 How many kWh are charged.

cdr_token CdrToken 1 Token used to start this Charging Session, includes all the relevant
information to identify the unique token.

auth_method AuthMethod 1 Method used for authentication.

location_id CiString(36) 1 Location.id of the Location object of this CPO, on which the Charging
Session is ongoing.

evse_uid CiString(36) 1 EVSE.uid of the EVSE of this Location on which the Charging Session is
ongoing.

connector_id CiString(36) 1 Connector.id of the Connector of this Location the Charging Session is
ongoing.

meter_id string(255) ? Optional identification of the kWh meter.

currency string(3) 1 ISO 4217 code of the currency used for this session.

charging_periods ChargingPeriod * An optional list of charging periods that can be used to calculate and verify
the total cost.

total_cost Price ? The total cost (excluding VAT) of the session in the specified currency. This
is the price that the eMSP will have to pay to the CPO. A total_cost of 0.00
means free of charge. When omitted, no price information is given in the
Session object, this does not have to mean it is free of charge.

status SessionStatus 1 The status of the session.

last_updated DateTime 1 Timestamp when this Session was last updated (or created).

8.3.1.1. Examples

Simple Session example of a just starting session

{
  "id": "101",
  "start_datetime": "2015-06-29T22:39:09Z",
  "kwh": 0.00,
  "token_uid": "012345678",
  "token_type": "RFID",
  "auth_method": "WHITELIST",
  "location_id": "LOC1",
  "evse_uid": "3256",
  "connector_id": "1",
  "currency": "EUR",
  "total_cost": {
    "excl_vat": 2.50,
    "incl_vat": 2.75
  },
  "status": "PENDING",
  "last_updated": "2015-06-29T22:39:09Z"
}

OCPI 2.2-RC1

54



Simple Session example of a short finished session

{
  "id": "101",
  "start_datetime": "2015-06-29T22:39:09Z",
  "end_datetime": "2015-06-29T23:50:16Z",
  "kwh": 41.00,
  "token_uid": "012345678",
  "token_type": "RFID",
  "auth_method": "WHITELIST",
  "location_id": "LOC1",
  "evse_uid": "3256",
  "connector_id": "1",
  "currency": "EUR",
  "charging_periods": [{
    "start_date_time": "2015-06-29T22:39:09Z",
    "dimensions": [{
      "type": "ENERGY",
      "volume": 120
    }, {
      "type": "MAX_CURRENT",
      "volume": 30
    }]
  }, {
    "start_date_time": "2015-06-29T22:40:54Z",
    "dimensions": [{
      "type": "ENERGY",
      "volume": 41000
    }, {
      "type": "MIN_CURRENT",
      "volume": 34
    }]
  }, {
    "start_date_time": "2015-06-29T23:07:09Z",
    "dimensions": [{
      "type": "PARKING_TIME",
      "volume": 0.718
    }],
    "tariff_id": "12"
  }],
  "total_cost": {
    "excl_vat": 8.50,
    "incl_vat": 9.35
  },
  "status": "COMPLETED",
  "last_updated": "2015-06-29T23:50:17Z"
}

8.3.2. ChargingPreferences Object

Contains the charging preferences for an EV driver.

Property Type Card. Description

profile_type ProfileType 1 Type of Smart Charging Profile selected by the driver. The ProfileType has to be
supported at the Connector, for every supported ProfileType, a Tariff is provided.
This gives the EV Driver the option between different pricing options.

departure_time DateTime ? Expected departure. Driver has given this datetime as expected departure
moment, which does not mean that that will be the real departure time.

energy_need number ? Requested amount of energy in kWh. EV drivers wants to have this amount of
energy charged.

discharge_allowed boolean ? Driver allows his/her EV to be discharged when needed, as long as the other
preferences are met: EV is charged with the preferred energy at the preferred
momement. Default if omitted: false.

OCPI 2.2-RC1

55



8.4. Data types

Describe all datatypes used in this object

8.4.1. ChargingPreferencesResponse enum

Different smart charging profile types.

No value for NOT_SUPPORTED, when a PUT for ChargingPreferences is received for a EVSE that does not support it: use HTTP

404.

Value Description

ACCEPTED Charging Preferences accepted, EVSE will try to execute them, this is no
guarantee that they will be fulfilled.

DEPARTURE_REQUIRED CPO requires departure time to be able to do Charging Preference based
Smart Charging.

ENERGY_NEED_REQUIRED CPO requires energy_need to be able to do Charging Preference based Smart
Charging.

NOT_POSSIBLE Charging Preferences contain a request that the EVSE knows it cannot fulfill.

PROFILE_TYPE_NOT_SUPPORTED profile_type contains a value that is not supported by the EVSE.

8.4.2. ProfileType enum

Different smart charging profile types.

Value Description

CHEAP Driver wants to use the cheapest charging profile possible.

FAST Driver wants his EV charged as quickly as possible and is willing to pay a premium for this, if
needed.

GREEN Driver wants his EV charged which as much regenerative (green) power as possible.

REGULAR Driver does not have special preferences.

8.4.3. SessionStatus enum

Defines the state of a session.

Value Description

ACTIVE The session is accepted and active. Al pre-condition are met: Communication between EV and
EVSE (for example: cable plugged in correctly), EV or Driver is authorized. EV is being charged, or
can be charged. Energy is, or is not, being transfered.

COMPLETED The session is finished successfully. No more modifications will be made to this session.

INVALID The session is declared invalid and will not be billed.

PENDING The session is pending, it has not yet started. Not all pre-condition are met. This is the initial state.
This session might never become an active session.

OCPI 2.2-RC1

56



9. CDRs module

Module Identifier: cdrs

Data owner: CPO

A Charge Detail Record is the description of a concluded charging session. The CDR is the only billing-relevant object. CDRs are

sent from the CPO to the eMSP after the charging session has ended. There is no requirement to send CDRs semi-realtime, it is

seen as good practice to send them as soon as possible. But if there is an agreement between parties to send them for example

once a month, that is also allowed by OCPI.

9.1. Flow and Lifecycle

CDRs are created by the CPO. They probably only will be sent to the eMSP that will be paying the bill of a charging session.

Because a CDR is for billing purposes, it cannot be changed/replaced, once sent to the eMSP, changes are not allowed in a CDR, a

Credit CDR needs to be send.

9.1.1. Credit CDRs

As CDRs are used for billing and can be seen as a kind of invoice. CDRs cannot be deleted, they have to be credited.

When a CPO wants to make changes to a CDR that is already send the a CPO, the CPO has to send a credit CDR for the first

CDR. This credit CDR SHALL have a different CDR.id, this can be a completely different number, or it can be the id of the original

CDR with something appended like for example: "-C" to make it unique again. To indicate this is a Credit CDR, the credit field is

set to true The Credit CDR references the old CDR via the credit_reference_id field, which SHALL contain the id of the

original CDR. The Credit CDR will contain all the data of the original CDR. Only the values in the total_cost field SHALL contain

the negative amounts of the original CDR.

After having send the Credit CDR, the CPO can send a new CDR, with a new unique ID, with the fields: credit and

credit_reference_id omitted.

NOTE
How far back in time a CPO can send a credit CDR, is not defined by OCPI, that is up the business contracts

between the different parties involved, there might be local laws involved etc.

9.1.2. Push model

When the CPO creates CDR(s) they push them to the relevant eMSP by calling POST on the eMSPs CDRs endpoint with the newly

created CDR(s). A CPO is not required to send ALL CDRs to ALL eMSPs, it is allowed to only send CDRs to the eMSP that a CDR

is relevant to.

CDRs should contain enough information (dimensions) to allow the eMSP to validate the total costs. It is advised to send enough

information to the eMSP so it can calculate its own costs for billing their customer. An eMSP might have a very different

contract/pricing model with the EV driver than the tariff structure from the CPO.

NOTE: CDRs can not yet be updated or removed. This might be added in a future version of OCPI.

If the CPO, for any reason wants to view a CDR it has posted to a eMSP system, the CPO can retrieve the CDR by calling the GET

on the eMSPs CDRs endpoint at the URL returned in the response to the POST.

9.1.3. Pull model

eMSPs who do not support the push model need to call GET on the CPOs CDRs endpoint to receive a list of CDRs.

This GET can also be used, combined with the Push model to retrieve CDRs, after the system (re)connects to a CPO, to get a list

of CDRs, 'missed' during a time offline.

OCPI 2.2-RC1

57



A CPO is not required to return all known CDRs, the CPO is allowed to return only the CDRs that are relevant for the requesting

eMSP.

9.2. Interfaces and endpoints

There is both a CPO and an eMSP interface for CDRs. Depending on business requirements parties can decide to use the CPO

Interface/Get model, or the eMSP Interface/Push model, or both. Push is the preferred model to use, the eMSP will receive CDRs

when created by the CPO.

9.2.1. CPO Interface

The CDRs endpoint can be used to create or retrieve CDRs.

Endpoint structure definition:

{cdr_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={limit}]

Examples:

https://www.server.com/ocpi/cpo/2.2/cdrs/?date_from=2019-01-28T12:00:00&date_to=2019-01-

29T12:00:00

https://ocpi.server.com/2.2/cdrs/?offset=50

https://www.server.com/ocpi/2.2/cdrs/?date_from=2019-01-29T12:00:00&limit=100

https://www.server.com/ocpi/cpo/2.2/cdrs/?offset=50&amp;limit=100

Method Description

GET Fetch CDRs, last updated (which in the current version of OCPI can only be the creation date/time) between
the {date_from} and {date_to} (paginated)

POST n/a

PUT n/a

PATCH n/a

DELETE n/a

9.2.1.1. GET Method

Fetch CDRs from the CPO systems.

Request Parameters

If additional parameters: {date_from} and/or {date_to} are provided, only CDRs with last_updated between the given date_from

and date_to will be returned.

This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Requi
red

Description

date_from DateTime no Only return CDRs that have last_updated after this Date/Time.

date_to DateTime no Only return CDRs that have last_updated before this Date/Time.

offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

OCPI 2.2-RC1

58



Response Data

The endpoint returns a list of CDRs matching the given parameters in the GET request, the header will contain the pagination

related headers.

Any older information that is not specified in the response is considered as no longer valid. Each object must contain all required

fields. Fields that are not specified may be considered as null values.

Datatype Card. Description

CDR * List of CDRs.

9.2.2. eMSP Interface

The CDRs endpoint can be used to create, or get CDRs.

Method Description

GET Retrieve an existing CDR

POST Send a new CDR.

PUT n/a (CDRs cannot be replaced)

PATCH n/a (CDRs cannot be updated)

DELETE n/a (CDRs cannot be removed)

9.2.2.1. GET Method

Fetch CDRs from the eMSP system.

Endpoint structure definition:

No structure defined. This is open to the MSP to define, the URL is provided to the CPO by the MSP in the result of the POST

request. Therefor OCPI does not define variables.

Example:

https://www.server.com/ocpi/2.2/cdrs/1234

Response URL

To retrieve an existing URL from the eMSP system, the URL, returned in the response to a POST of a new CDR, has to be used.

Response Data

The endpoint returns the requested CDR, if it exists

Datatype Card. Description

CDR 1 Requested CDR object.

9.2.2.2. POST Method

Creates a new CDR.

The post method should contain the full, final CDR object.

Endpoint structure definition:

OCPI 2.2-RC1

59



{cdr_endpoint_url}

Example:

https://www.server.com/ocpi/2.2/cdrs/

Request Body

In the post request the new CDR object is sent.

Type Card. Description

CDR 1 New CDR object.

Response Headers

The response should contain the URL to the just created CDR object in the eMSP system.

Parameter Datatype Requi
red

Description

Location URL yes URL to the newly created CDR in the eMSP system, can be used by the CPO
system to do a GET on of the same CDR

The MSP returns the URL where the newly created CDR can be found. OCPI does not define a specific structure for this URL.

Example:

https://www.server.com/ocpi/emsp/2.2/cdrs/123456

9.3. Object description

9.3.1. CDR Object

The CDR object describes the Charging Session and its costs, how these costs are built up, etc.

The CDR object is different from the Session object. The Session object is dynamic as it reflects the current state of the charging

session. The information is meant to be viewed by the driver while the charging session is ongoing.

The CDR on the other hand can be thought of as "sealed", preserving the information valid at the moment in time the underlying

session was started. This is a requirement of the main use case for CDRs, namely invoicing. If e.g. a street is renamed the day after

a session took place, the driver should be presented with the name valid at the time the session was started. This guarantees that

CDR will be recognized as correct by the driver and not contested.

The CDR object shall always contain information like location, EVSE, Tariffs and Token as they were at the START of the Charging

Session.

Property Type Card. Description

id CiString(39) 1 Uniquely identifies the CDR within the CPOs platform (and sub-operator
platforms). This field is longer then the usual 36 chars to allow for credit
CDRs to have something appended to the original ID, to make it unique.
Normal (non-credit) CDRs SHALL only have an ID with a maximum length
of 36.

start_date_time DateTime 1 Start timestamp of the charging session.

stop_date_time DateTime 1 Stop timestamp of the charging session.

session_id CiString(36) ? Unique ID of the Session for which this CDR is send. Is only allowed to be
omitted when the CPO has not implemented the Sessions Module.

OCPI 2.2-RC1

60



Property Type Card. Description

cdr_token CdrToken 1 Token used to start this Charging Session, includes all the relevant
information to identify the unique token.

auth_method AuthMethod 1 Method used for authentication.

cdr_location CdrLocation 1 Location where the charging session took place, including only the relevant
EVSE and Connector.

meter_id string(255) ? Identification of the Meter inside the Charge Point.

currency string(3) 1 Currency of the CDR in ISO 4217 Code.

tariffs Tariff * List of relevant tariff elements, see: Tariff. When relevant, a "Free of
Charge" tariff should also be in this list, and point to a defined "Free of
Charge" tariff.

charging_periods ChargingPeriod + List of charging periods that make up this charging session. A session
consists of 1 or more periods, where each period has a different relevant
Tariff.

total_cost Price 1 Total cost of this transaction in the specified currency.

total_energy number 1 Total energy charged, in kWh.

total_time number 1 total duration of this session (including the duration of charging and not
charging), in hours.

total_parking_time number ? Total duration during this session that the EV is not being charged (no
energy being transfered between EVSE and EV), in hours.

remark string(255) ? Optional remark, can be used to provide addition human readable
information to the CDR, for example: reason why a transaction was
stopped.

credit boolean ? When set to 'true', this is a Credit CDR, and the field
credit_reference_id needs to be set as well.

credit_reference_id CiString(36) ? Is required to be set for a Credit CDR. This SHALL contain the id of the
CDR for which this is a Credit CDR.

last_updated DateTime 1 Timestamp when this CDR was last updated (or created).

NOTE
The duration of charging (energy being transferred between EVSE and EV) during this session can be calculated

via: total_time - total_parking_time.

NOTE
Having both a credit and a credit_reference_id might seem redundant. But it is seen as an advantage,

having a boolean flag that can be used for queries, is much faster then string comparisons.

9.3.1.1. Example of a CDR

OCPI 2.2-RC1

61



{
  "id": "12345",
  "start_date_time": "2015-06-29T21:39:09Z",
  "stop_date_time": "2015-06-29T23:37:32Z",
  "token": {
    "uid": "012345678",
    "type": "RFID",
    "contract_id": "DE8ACC12E46L89",
    "visual_number": "DF000-2001-8999-1",
    "issuer": "TheNewMotion",
    "group_id": "DF000-2001-8999",
    "valid": true,
    "whitelist": "ALLOWED",
    "last_updated": "2015-06-29T22:39:09Z"
  },
  "auth_method": "WHITELIST",
  "cdr_location": {
    "id": "LOC1",
    "name": "Gent Zuid",
    "address": "F.Rooseveltlaan 3A",
    "city": "Gent",
    "postal_code": "9000",
    "country": "BE",
    "coordinates": {
      "latitude": "3.729944",
      "longitude": "51.047599"
    },
    "evses_uid": "3256",
    "evse_id": "BE*BEC*E041503003",
    "connectors_id": "1",
    "connectors_standard": "IEC_62196_T2",
    "connectors_format": "SOCKET",
    "connectors_power_type": "AC_1_PHASE"
  },
  "currency": "EUR",
  "tariffs": [{
    "id": "12",
    "currency": "EUR",
    "elements": [{
      "price_components": [{
        "type": "TIME",
        "price": 2.00,
        "vat": 10.0,
        "step_size": 300
      }]
    }],
    "last_updated": "2015-02-02T14:15:01Z"
  }],
  "charging_periods": [{
    "start_date_time": "2015-06-29T21:39:09Z",
    "dimensions": [{
      "type": "TIME",
      "volume": 1.973
    }],
    "tariff_id": "12"
  }],
  "total_cost": 4.00,
  "total_cost_incl_vat": 4.40,
  "total_energy": 15.342,
  "total_time": 1.973,
  "last_updated": "2015-06-29T22:01:13Z"
}

9.4. Data types

9.4.1. AuthMethod enum

Value Description

AUTH_REQUEST Authentication request from the eMSP

OCPI 2.2-RC1

62



Value Description

WHITELIST Whitelist used to authenticate, no request done to the eMSP

9.4.2. CdrDimension class

Property Type Card. Description

type CdrDimension
Type

1 Type of cdr dimension

volume number 1 Volume of the dimension consumed, measured according to the dimension type.

9.4.3. CdrDimensionType enum

Value Description

ENERGY defined in kWh, default step_size is 1 Wh

FLAT flat fee, no unit

MAX_CURRENT defined in A (Ampere), Maximum current reached during charging session

MIN_CURRENT defined in A (Ampere), Minimum current used during charging session

PARKING_TIME time not charging: defined in hours, default step_size is 1 second

TIME time charging: defined in hours, default step_size is 1 second

9.4.4. CdrLocation class

The CdrLocation class contains only the relevant information from the Location object that is needed in a CDR.

Property Type Card. Description

id CiString(36) 1 Uniquely identifies the location within the CPOs platform (and suboperator
platforms). This field can never be changed, modified or renamed.

name string(255) ? Display name of the location.

address string(45) 1 Street/block name and house number if available.

city string(45) 1 City or town.

postal_code string(10) 1 Postal code of the location.

country string(3) 1 ISO 3166-1 alpha-3 code for the country of this location.

coordinates GeoLocation 1 Coordinates of the location.

evse_uid CiString(36) 1 Uniquely identifies the EVSE within the CPOs platform (and suboperator
platforms). For example a database unique ID or the "EVSE ID". This field can
never be changed, modified or renamed. This is the 'technical' identification of
the EVSE, not to be used as 'human readable' identification, use the field:
evse_id for that.

evse_id CiString(48) 1 Compliant with the following specification for EVSE ID from "eMI3 standard
version V1.0" (http://emi3group.com/documents-links/) "Part 2: business
objects.".

connector_id CiString(36) 1 Identifier of the connector within the EVSE.

connector_standard ConnectorTyp
e

1 The standard of the installed connector.

connector_format ConnectorFor
mat

1 The format (socket/cable) of the installed connector.

connector_power_type PowerType 1

OCPI 2.2-RC1

63

http://emi3group.com/documents-links/


9.4.5. CdrToken class

Property Type Card. Description

uid CiString(36) 1 Unique ID by which this Token can be identified.
This is the field used by CPO system (RFID reader on the Charge Point) to
identify this token.
Currently, in most cases: type=RFID, this is the RFID hidden ID as read by the
RFID reader, but that is not a requirement.
If this is a type=APP_USER Token, it will be a uniquely, by the MSP, generated
ID.

type TokenType 1 Type of the token

contract_id CiString(36) 1 Uniquely identifies the EV Driver contract token within the eMSP’s platform (and
suboperator platforms). Recommended to follow the specification for eMA ID
from "eMI3 standard version V1.0" (http://emi3group.com/documents-links/)
"Part 2: business objects."

9.4.6. ChargingPeriod class

A charging period consists of a start timestamp and a list of possible values that influence this period, for example: Amount of

energy charged this period, maximum current during this period etc.

Property Type Card. Description

start_date_time DateTime 1 Start timestamp of the charging period. This period ends when a next period
starts, the last period ends when the session ends.

dimensions CdrDimension + List of relevant values for this charging period.

tariff_id CiString(36) ? Uniquely identifier of the tariff that is relevant for this ChargingPeriod. If not
provided, no tariff is relevant during this period.

OCPI 2.2-RC1

64

http://emi3group.com/documents-links/


10. Tariffs module

Module Identifier: tariffs

Data owner: CPO

The Tariffs module gives eMSPs information about the tariffs used by the CPO.

10.1. Flow and Lifecycle

10.1.1. Push model

When the CPO creates a new Tariff they push them to the eMSPs by calling the PUT on the eMSPs Tariffs endpoint with the newly

created Tariff object.

Any changes to the Tariff(s) in the CPO system can be send to the eMSP system by calling either PUT or PATCH on the eMSPs

Tariffs endpoint with the updated Tariff object.

When the CPO deletes a Tariff, they will update the eMSPs systems by calling DELETE on the eMSPs Tariffs endpoint, with the ID

of the Tariff that is deleted.

When the CPO is not sure about the state or existence of a Tariff object in the eMSPs system, the CPO can call the GET to validate

the Tariff object in the eMSP system.

10.1.2. Pull model

eMSPs who do not support the push model need to call GET on the CPOs Tariff endpoint to receive all Tariffs, replacing the current

list of known Tariffs with the newly received list.

10.2. Interfaces and endpoints

There is both a CPO and an eMSP interface for Tariffs. Advised is to use the push direction from CPO to eMSP during normal

operation. The CPO interface is meant to be used when the connection between 2 parties is established to retrieve the current list

of Tariffs objects, and when the eMSP is not 100% sure the Tariff cache is still correct.

10.2.1. CPO Interface

The CPO Tariffs interface gives the eMSP the ability to request tariffs.

Method Description

GET Returns Tariff Objects from the CPO, last updated between the {date_from} and {date_to} (paginated)

POST n/a

PUT n/a

PATCH n/a

DELETE n/a

10.2.1.1. GET Method

Fetch information about all Tariffs.

Endpoint structure definition:

OCPI 2.2-RC1

65



{tariffs_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={lim

it}]

Examples:

https://www.server.com/ocpi/cpo/2.2/tariffs/?date_from=2019-01-28T12:00:00&date_to=2019-01-

29T12:00:00

https://ocpi.server.com/2.2/tariffs/?offset=50

https://www.server.com/ocpi/2.2/tariffs/?date_from=2019-01-29T12:00:00&limit=100

https://www.server.com/ocpi/cpo/2.2/tariffs/?offset=50&amp;limit=100

Request Parameters

If additional parameters: {date_from} and/or {date_to} are provided, only Tariffs with (last_updated) between the given date_from

and date_to will be returned.

This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Requi
red

Description

date_from DateTime no Only return Tariffs that have last_updated after this Date/Time.

date_to DateTime no Only return Tariffs that have last_updated before this Date/Time.

offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

Response Data

The endpoint returns an object with a list of valid Tariffs, the header will contain the pagination related headers.

Any older information that is not specified in the response is considered as no longer valid. Each object must contain all required

fields. Fields that are not specified may be considered as null values.

Type Card. Description

Tariff * List of all tariffs.

10.2.2. eMSP Interface

Tariffs is a client owned object, so the end-points need to contain the required extra fields: {party_id} and {country_code}.

Endpoint structure definition:

{tariffs_endpoint_url}{country_code}/{party_id}/{tariff_id}

Example:

https://www.server.com/ocpi/cpo/2.2/tariffs/BE/BEC/12

Method Description

GET Retrieve a Tariff as it is stored in the eMSP system.

POST n/a

PUT Push new/updated Tariff object to the eMSP.

PATCH Notify the eMSP of partial updates to a Tariff.

OCPI 2.2-RC1

66



Method Description

DELETE Remove Tariff object which is no longer valid

10.2.2.1. GET Method

If the CPO wants to check the status of a Tariff in the eMSP system it might GET the object from the eMSP system for validation

purposes. The CPO is the owner of the objects, so it would be illogical if the eMSP system had a different status or was missing an

object.

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requi
red

Description

country_code CiString(2) yes Country code of the CPO requesting this PUT to the eMSP system.

party_id CiString(3) yes Party ID (Provider ID) of the CPO requesting this PUT to the eMSP system.

tariff_id CiString(36) yes Tariff.id of the Tariff object to retrieve.

Response Data

The response contains the requested object.

Type Card. Description

Tariff 1 The requested Tariff object.

10.2.2.2. PUT Method

New or updated Tariff objects are pushed from the CPO to the eMSP.

Request Body

In the put request the new or updated Tariff object is sent.

Type Card. Description

Tariff 1 New or updated Tariff object

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requi
red

Description

country_code CiString(2) yes Country code of the CPO requesting this PUT to the eMSP system.

party_id CiString(3) yes Party ID (Provider ID) of the CPO requesting this PUT to the eMSP system.

tariff_id CiString(36) yes Tariff.id of the (new) Tariff object (to replace).

Example: New Tariff 2 euro per hour

OCPI 2.2-RC1

67



PUT To URL: https://www.server.com/ocpi/emsp/2.2/tariffs/NL/TNM/12

{
  "id": "12",
  "currency": "EUR",
  "elements": [{
    "price_components": [{
      "type": "TIME",
      "price": 2.00,
      "vat": 10.0,
      "step_size": 300
    }]
  }]
}

10.2.2.3. PATCH Method

The PATCH method works the same as the PUT method, except that the fields/objects that have to be updated have to be present,

other fields/objects that are not specified are considered unchanged.

Example: Change Tariff to 2,50

PUT To URL: https://www.server.com/ocpi/emsp/2.2/tariffs/NL/TNM/12

{
  "elements": [{
    "price_components": [{
      "type": "TIME",
      "price": 2.50,
      "step_size": 300
    }]
  }],
  "last_updated": "2015-06-29T20:39:09Z"
}

10.2.2.4. DELETE Method

Delete a no longer valid Tariff object.

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requi
red

Description

country_code CiString(2) yes Country code of the CPO requesting this PUT to the eMSP system.

party_id CiString(3) yes Party ID (Provider ID) of the CPO requesting this PUT to the eMSP system.

tariff_id CiString(36) yes Tariff.id of the Tariff object to delete.

10.3. Object description

10.3.1. Tariff Object

A Tariff Object consists of a list of one or more TariffElements, these elements can be used to create complex Tariff structures.

When the list of elements contains more then 1 element, than the first tariff in the list with matching restrictions will be used.

It is advised to always set a "default" tariff, the last tariff in the list of elements with no restriction. This acts as a fallback when non of

the TariffElements before this matches the current charging period.

OCPI 2.2-RC1

68



To define a "Free of Charge" Tariff in OCPI, a tariff has to be provided that has a type = FLAT and price = 0.00. See: Free of

Charge Tariff example

Property Type Card. Description

id CiString(36) 1 Uniquely identifies the tariff within the CPOs platform (and suboperator
platforms).

currency string(3) 1 Currency of this tariff, ISO 4217 Code

type TariffType ? Defines what type of tariff this is. This makes it possible to make distinction
possible for different Charging Preferences. When omitted, this tariff is valid for
all sessions.

tariff_alt_text DisplayText * List of multi language alternative tariff info text

tariff_alt_url URL ? Alternative URL to tariff info

min_price Price ? When this field is set, a Charging Session with this tariff will minimum cost this
amount. This is different from a FLAT fee (Start Tariff, Transaction Fee), such a
fee is a fixed amount that has to be payed for any Charging Session. A Minimum
price means that when the cost of a Charging Session is lower then this
amount, the cost of the Session will be equal to this amount. Also see note
below.

max_price Price ? When this field is set, a Charging Session with this tariff will NOT cost more then
this amount. See note below.

elements TariffElement + List of tariff elements

start_datetime DateTime ? The time when this tariff becomes active. Typically used for a new tariff that is
already given with the location, before it becomes active. (See note below)

end_datetime DateTime ? The time after which this tariff is no longer valid. Typically used when this tariff is
going to be replaced with a different tariff in the near future. (See note below)

energy_mix EnergyMix ? Details on the energy supplied with this tariff.

last_updated DateTime 1 Timestamp when this Tariff was last updated (or created).

NOTE

min_price: As the VAT might be built up of different parts, there might be situations where minimum including

VAT is reached earlier or later then then the minimum excluding VAT. So as a rule: they both apply: - Minimum

cost of a Charging Session including VAT can never be lower than the min_price including VAT. - Minimum cost of

a Charging Session excluding VAT can never be lower than the min_price excluding VAT.

NOTE

max_price: As the VAT might be built up of different parts, there might be situations where maximum including

VAT is reached earlier or later then then the maximum excluding VAT. So as a rule: they both apply: - Total cost of

a Charging Session including VAT can never be higher than the max_price including VAT. - Total cost of a

Charging Session excluding VAT can never be higher than the max_price excluding VAT.

NOTE

start_datetime and end_datetime: When the tariff of a Charge Point (Location) is changed with an ongoing

charging session, it is common to not switch the tariff until the ongoing session is finished. But this is NOT a rule

of OCPI. The driver has started charging and might have read the tariff info before charging. When the tariff is

then changed during the session, the driver might get a bill that is higher then expected.

10.3.1.1. Examples

Simple Tariff example 0.25 euro per kWh

• 0.25 euro per kWh (excluding VAT)

• 10% VAT

• Billed per 1 Wh

OCPI 2.2-RC1

69



{
  "id": "16",
  "currency": "EUR",
  "elements": [{
    "price_components": [{
      "type": "ENERGY",
      "price": 0.25,
      "vat": 10.0,
      "step_size": 1
    }]
  }],
  "last_updated": "2018-12-17T11:16:55Z"
}

Tariff example 0.25 euro per kWh + start fee

• Start or transaction fee

• 0.50 euro (excluding VAT)

• 20% VAT

• Energy

• 0.25 euro per kWh (excluding VAT)

• 10% VAT

• Billed per 1 Wh

This tariff will result in costs of 5.50 euro (ex VAT) when 20 kWh is charged.

{
  "id": "17",
  "currency": "EUR",
  "elements": [{
    "price_components": [{
      "type": "FLAT",
      "price": 0.50,
      "vat": 20.0,
      "step_size": 1
    }, {
      "type": "ENERGY",
      "price": 0.25,
      "vat": 10.0,
      "step_size": 1
    }]
  }],
  "last_updated": "2018-12-17T11:36:01Z"
}

Tariff example 0.25 euro per kWh + minimum price

• minimum price 0.50 (ex VAT)

• 0.25 euro per kWh (excluding VAT)

• 10% VAT

• Billed per 1 Wh

This tariff will result in costs of 5.00 euro (ex VAT) when 20 kWh is charged. But if less then 2 kWh is charged, 0.50 (ex VAT) will be

billed.

This is different from a start fee, see example above.

OCPI 2.2-RC1

70



{
  "id": "20",
  "currency": "EUR",
  "min_price": {
    "excl_vat": 0.50,
    "incl_vat": 0.55
  },
  "elements": [{
    "price_components": [{
      "type": "ENERGY",
      "price": 0.25,
      "vat": 10.0,
      "step_size": 1
    }]
  }],
  "last_updated": "2018-12-17T16:45:21Z"
}

Tariff example 0.25 euro per kWh + parking fee + start fee

• Start or transaction fee

• 0.50 euro (excluding VAT)

• 20% VAT

• Energy

• 0.25 euro per kWh (excluding VAT)

• 10% VAT

• Billed per 1 Wh

• Parking

• 2.00 euro per hour (excluding VAT)

• 20% VAT

• Billed per 15 min (900 seconds)

{
  "id": "18",
  "currency": "EUR",
  "elements": [{
    "price_components": [{
      "type": "FLAT",
      "price": 0.50,
      "vat": 20.0,
      "step_size": 1
    }, {
      "type": "ENERGY",
      "price": 0.25,
      "vat": 10.0,
      "step_size": 1
    }, {
      "type": "PARKING_TIME",
      "price": 2.00,
      "vat": 20.0,
      "step_size": 900
    }]
  }],
  "last_updated": "2018-12-17T11:44:10Z"
}

Tariff example 0.25 euro per kWh + start fee + max price + tariff end date

• Start or transaction fee

OCPI 2.2-RC1

71



• 0.50 euro (excluding VAT)

• 20% VAT

• Energy

• 0.25 euro per kWh (excluding VAT)

• 10% VAT

• Billed per 1 Wh

This tariff has a maximum price of 25 euro (ex VAT).

This tariff has an end date: 30 June 2019, this is typically used when a tariff is going to be replaced by a new tariff. A Connector of

a Location can have multiple tariffs (IDs). By assigning both the old and the new tariff ID, they will automatically be replaced. It is

then not need to update all location at the same time, the old tariff can be removed later.

{
  "id": "16",
  "currency": "EUR",
  "max_price": {
    "excl_vat": 25.00,
    "incl_vat": 27.50
  },
  "elements": [{
    "price_components": [{
      "type": "FLAT",
      "price": 0.50,
      "vat": 20.0,
      "step_size": 1
    }, {
      "type": "ENERGY",
      "price": 0.25,
      "vat": 10.0,
      "step_size": 1
    }]
  }],
  "end_datetime": "2019-06-30T23:59:59Z",
  "last_updated": "2018-12-17T17:15:01Z"
}

Simple Tariff example 2 euro per hour

An example of a tariff where the driver does not pay per kWh, but for the time of using the Charge Point.

• 2.00 euro per hour charging (not per kWh) (excluding VAT)

• 10% VAT

• Billed per 1 minutes (60 seconds)

As this is tariff is only has a TIME price_component, the driver will not be billed for time not charging: PARKING_TIME

{
  "id": "12",
  "currency": "EUR",
  "elements": [{
    "price_components": [{
      "type": "TIME",
      "price": 2.00,
      "vat": 10.0,
      "step_size": 60
    }]
  }],
  "last_updated": "2015-06-29T20:39:09Z"
}

OCPI 2.2-RC1

72



Simple Tariff example 3 euro per hour, 5 euro per hour parking

Example of a tariff where the driver pays for the time of using the Charge Point, but pays more when the car is no longer charging,

to discourage the EV driver of leaving his EV connected when it is full.

• Charging time

• 3.00 euro per hour charging (not per kWh) (excluding VAT)

• 10% VAT

• Billed per 1 minutes (60 seconds)

• Parking

• 5.00 euro per hour (excluding VAT)

• 20% VAT

• Billed per 5 min (300 seconds)

{
  "id": "21",
  "currency": "EUR",
  "elements": [{
    "price_components": [{
      "type": "TIME",
      "price": 3.00,
      "vat": 10.0,
      "step_size": 60
    }, {
      "type": "PARKING_TIME",
      "price": 5.00,
      "vat": 20.0,
      "step_size": 300
    }]
  }],
  "last_updated": "2018-12-17T17:00:43Z"
}

Ad-Hoc simple Tariff example with multiple languages

For ad-hoc charging (paying for charging without a contract, the tariff elements are less needed. Normally no CDR will be send to

an MSP for ad-hoc charging. Having a good human readable text is much more useful.

• 2 euro per hour charging (not per kWh) (including VAT)

• 5.2% VAT

• Billed per 5 minutes (300 seconds)

OCPI 2.2-RC1

73



{
  "id": "12",
  "currency": "EUR",
  "type": "AD_HOC_PAYMENT",
  "tariff_alt_text": [{
    "language": "en",
    "text": "2.00 euro p/hour including VAT."
  }, {
    "language": "nl",
    "text": "2.00 euro p/uur inclusief BTW."
  }],
  "elements": [{
    "price_components": [{
      "type": "TIME",
      "price": 1.90,
      "vat": 5.2,
      "step_size": 300
    }]
  }],
  "last_updated": "2015-06-29T20:39:09Z"
}

Ad-Hoc Tariff example not possible with OCPI

For this example, credit card start tariff is 0.50 euro, but when using a debit card it is only 0.25 euro.

Such a tariff cannot be modeled with OCPI, but by modeling it as 0.50 euro start tariff, using a debit card as a discount of 0.25 euro.

Nobody is likely to complain. But the tariff_alt_text explains this clearly.

{
  "id": "19",
  "currency": "EUR",
  "type": "AD_HOC_PAYMENT",
  "tariff_alt_text": [{
    "language": "en",
    "text": "2.00 euro p/hour, start tariff debit card: 0.25 euro, credit card: 0.50 euro including VAT."
  }, {
    "language": "nl",
    "text": "2.00 euro p/uur, starttarief bankpas: 0,25 euro, creditkaart: 0,50 euro inclusief BTW."
  }],
  "elements": [{
    "price_components": [{
      "type": "FLAT",
      "price": 0.40,
      "vat": 25.0,
      "step_size": 1
    }, {
      "type": "TIME",
      "price": 1.90,
      "vat": 5.2,
      "step_size": 300
    }]
  }],
  "last_updated": "2018-17-29T15:55:58Z"
}

Simple Tariff example with alternative URL

This examples shows the use of tariff_alt_url.

This examples shows a PROFILE_CHEAP tariff. This is a smart-charging tariff. Were a driver selects to charge as cheaply as

possible. In such case, the price might not be fixed, but depend on the real-time energy prices. To explain this to the driver, a short

text inside tariff_alt_text might not be the best solution, maybe you want to show a graph. In such a case, an URL can be

given that links to a better explanation of the tariff.

• 0.25 euro per kWh (excluding VAT)

OCPI 2.2-RC1

74



• 10% VAT

• Billed per 0.1 kWh (100 Wh)

{
  "id": "13",
  "currency": "EUR",
  "type": "PROFILE_CHEAP",
  "tariff_alt_url": "https://company.com/tariffs/13",
  "elements": [{
    "price_components": [{
      "type": "FLAT",
      "price": 0.50,
      "vat": 20.0,
      "step_size": 1
    }, {
      "type": "ENERGY",
      "price": 0.25,
      "vat": 10.0,
      "step_size": 1
    }]
  }],
  "last_updated": "2015-06-29T20:39:09Z"
}

Complex Tariff example

• 2.50 euro start tariff

• 1.00 euro per hour charging tariff for less than 32A (paid per 15 minutes)

• 2.00 euro per hour charging tariff for more than 32A on weekdays (paid per 10 minutes)

• 1.25 euro per hour charging tariff for more than 32A during the weekend (paid per 10 minutes)

Parking costs:

• Weekdays: between 09:00 and 18:00 : 5 euro (paid per 5 minutes)

• Saturday: between 10:00 and 17:00 : 6 euro (paid per 5 minutes)

VAT:

• 15% on start tariff

• 20% on charging per hour

• 10% on parking

OCPI 2.2-RC1

75



{
  "id": "14",
  "currency": "EUR",
  "type": "REGULAR",
  "tariff_alt_url": "https://company.com/tariffs/11",
  "elements": [{
    "price_components": [{
      "type": "FLAT",
      "price": 2.50,
      "vat": 15.0,
      "step_size": 1
    }]
  }, {
    "price_components": [{
      "type": "TIME",
      "price": 1.00,
      "vat": 20.0,
      "step_size": 900
    }],
    "restrictions": {
      "max_power": 32.00
    }
  }, {
    "price_components": [{
      "type": "TIME",
      "price": 2.00,
      "vat": 20.0,
      "step_size": 600
    }],
    "restrictions": {
      "min_power": 32.00,
      "day_of_week": ["MONDAY", "TUESDAY", "WEDNESDAY", "THURSDAY", "FRIDAY"]
    }
  }, {
    "price_components": [{
      "type": "TIME",
      "price": 1.25,
      "vat": 20.0,
      "step_size": 600
    }],
    "restrictions": {
      "min_power": 32.00,
      "day_of_week": ["SATURDAY", "SUNDAY"]
    }
  }, {
    "price_components": [{
      "type": "PARKING_TIME",
      "price": 5.00,
      "vat": 10.0,
      "step_size": 300
    }],
    "restrictions": {
      "start_time": "09:00",
      "end_time": "18:00",
      "day_of_week": ["MONDAY", "TUESDAY", "WEDNESDAY", "THURSDAY", "FRIDAY"]
    }
  }, {
    "price_components": [{
      "type": "PARKING_TIME",
      "price": 6.00,
      "vat": 10.0,
      "step_size": 300
    }],
    "restrictions": {
      "start_time": "10:00",
      "end_time": "17:00",
      "day_of_week": ["SATURDAY"]
    }
  }],
  "last_updated": "2015-06-29T20:39:09Z"
}

OCPI 2.2-RC1

76



Free of Charge Tariff example

In this example no VAT (that might not always be the case)

{
  "id": "15",
  "currency": "EUR",
  "elements": [{
    "price_components": [{
      "type": "FLAT",
      "price": 0.00,
      "step_size": 0
    }]
  }],
  "last_updated": "2015-06-29T20:39:09Z"
}

First hour free energy example

• The first hour of parking time is free.

• From the second to the fourth hour is 2.00 euro per hour

• From the fourth on 3.00 euro per hour

Something similar applies to the kWh consumed.

• The first kWhs is free,

• 0.20 euro per kWh for the rest.

OCPI 2.2-RC1

77



{
  "id" : "52",
  "currency" : "EUR",
  "elements" : [ {
    "price_components" : [ {
      "type" : "PARKING_TIME",
      "price" : 0.0,
      "step_size" : 60
    } ],
    "restrictions" : {
      "min_duration" : 0,
      "max_duration" : 3600
    }
  }, {
    "price_components" : [ {
      "type" : "PARKING_TIME",
      "price" : 2.0,
      "step_size" : 60
    } ],
    "restrictions" : {
      "min_duration" : 3600,
      "max_duration" : 10800
    }
  }, {
    "price_components" : [ {
      "type" : "PARKING_TIME",
      "price" : 3.0,
      "step_size" : 60
    } ],
    "restrictions" : {
      "min_duration" : 10800
    }
  }, {
    "price_components" : [ {
      "type" : "ENERGY",
      "price" : 0.0,
      "step_size" : 1
    } ],
    "restrictions" : {
      "max_kwh" : 1.0
    }
  }, {
    "price_components" : [ {
      "type" : "ENERGY",
      "price" : 0.2,
      "step_size" : 1
    } ],
    "restrictions" : {
      "min_kwh" : 1.0
    }
  } ]
}

Tariff example with reservation price

• Reservation

• 5.00 euro per hour (excluding VAT)

• 20% VAT

• Billed per 1 minute (60 seconds)

• Start or transaction fee

• 0.50 euro (excluding VAT)

• 20% VAT

• Energy

• 0.25 euro per kWh (excluding VAT)

OCPI 2.2-RC1

78



• 10% VAT

• Billed per 1 Wh

{
  "id": "20",
  "currency": "EUR",
  "elements": [{
    "price_components": [{
      "type": "TIME",
      "price": 6.00,
      "vat": 20.0,
      "step_size": 60
    }],
    "restrictions": {
      "reservation": "RESERVATION"
    }
  }, {
    "price_components": [{
      "type": "FLAT",
      "price": 0.50,
      "vat": 20.0,
      "step_size": 1
    }, {
      "type": "ENERGY",
      "price": 0.25,
      "vat": 10.0,
      "step_size": 1
    }]
  }],
  "last_updated": "2019-02-03T17:00:11Z"
}

Tariff example with reservation price and fee

• Reservation

• 2.00 euro reservation fee (excluding VAT)

• 5.00 euro per hour (excluding VAT)

• 20% VAT

• Billed per 5 minutes (300 seconds)

• Start or transaction fee

• 0.50 euro (excluding VAT)

• 20% VAT

• Energy

• 0.25 euro per kWh (excluding VAT)

• 10% VAT

• Billed per 1 Wh

OCPI 2.2-RC1

79



{
  "id": "20",
  "currency": "EUR",
  "elements": [{
    "price_components": [{
      "type": "FLAT",
      "price": 2.00,
      "vat": 20.0,
      "step_size": 1
    }, {
      "type": "TIME",
      "price": 6.00,
      "vat": 20.0,
      "step_size": 300
    }],
    "restrictions": {
      "reservation": "RESERVATION"
    }
  }, {
    "price_components": [{
      "type": "FLAT",
      "price": 0.50,
      "vat": 20.0,
      "step_size": 1
    }, {
      "type": "ENERGY",
      "price": 0.25,
      "vat": 10.0,
      "step_size": 1
    }]
  }],
  "last_updated": "2019-02-03T17:00:11Z"
}

Tariff example with reservation price and expire fee

• Reservation

• 4.00 euro reservation expire fee (excluding VAT) (when reservation not used, this fee is added to reservation cost)

• 2.00 euro per hour (excluding VAT)

• 20% VAT

• Billed per 10 minutes (600 seconds)

• Start or transaction fee

• 0.50 euro (excluding VAT)

• 20% VAT

• Energy

• 0.25 euro per kWh (excluding VAT)

• 10% VAT

• Billed per 1 Wh

OCPI 2.2-RC1

80



{
  "id": "20",
  "currency": "EUR",
  "elements": [{
    "price_components": [{
      "type": "FLAT",
      "price": 4.00,
      "vat": 20.0,
      "step_size": 1
    }],
    "restrictions": {
      "reservation": "RESERVATION_EXPIRES"
    }
  }, {
    "price_components": [{
      "type": "TIME",
      "price": 2.00,
      "vat": 20.0,
      "step_size": 600
    }],
    "restrictions": {
      "reservation": "RESERVATION"
    }
  }, {
    "price_components": [{
      "type": "FLAT",
      "price": 0.50,
      "vat": 20.0,
      "step_size": 1
    }, {
      "type": "ENERGY",
      "price": 0.25,
      "vat": 10.0,
      "step_size": 1
    }]
  }],
  "last_updated": "2019-02-03T17:00:11Z"
}

Tariff example with reservation time and expire time

• Reservation

• 3.00 euro per hour (excluding VAT)

• 6.00 euro per hour (excluding VAT) (When reservation expires, EV driver never starts to charge)

• 20% VAT

• Billed per 10 minutes (600 seconds)

• Start or transaction fee

• 0.50 euro (excluding VAT)

• 20% VAT

• Energy

• 0.25 euro per kWh (excluding VAT)

• 10% VAT

• Billed per 100 Wh

OCPI 2.2-RC1

81



{
  "id": "20",
  "currency": "EUR",
  "elements": [{
    "price_components": [{
      "type": "FLAT",
      "price": 4.00,
      "vat": 20.0,
      "step_size": 1
    }],
    "restrictions": {
      "reservation": "RESERVATION_EXPIRES"
    }
  }, {
    "price_components": [{
      "type": "TIME",
      "price": 2.00,
      "vat": 20.0,
      "step_size": 600
    }],
    "restrictions": {
      "reservation": "RESERVATION"
    }
  }, {
    "price_components": [{
      "type": "FLAT",
      "price": 0.50,
      "vat": 20.0,
      "step_size": 1
    }, {
      "type": "ENERGY",
      "price": 0.25,
      "vat": 10.0,
      "step_size": 1
    }]
  }],
  "last_updated": "2019-02-03T17:00:11Z"
}

Example of cost:

• EV driver reserves the EVSE for half an hour (30 minutes).

• When the driver would start charging after 9 minutes, and charges 48.03 kWh: 0.50 + 0.50 + 12 = 13.00 euro (excluding

VAT)

• When the driver would start charging after 12 minutes, and charges 62.98 kWh: 1.00 + 0.50 + 15.75 = 17.25 euro (excluding

VAT)

• When the driver never start to charge before the reservation expires, cost: 3.00 euro (excluding VAT)

10.4. Data types

10.4.1. DayOfWeek enum

Value Description

MONDAY Monday

TUESDAY Tuesday

WEDNESDAY Wednesday

THURSDAY Thursday

FRIDAY Friday

SATURDAY Saturday

SUNDAY Sunday

OCPI 2.2-RC1

82



10.4.2. PriceComponent class

Property Type Card
.

Description

type TariffDimensionType 1 Type of tariff dimension

price number 1 price per unit (excluding VAT) for this tariff dimension

vat number ? applicable VAT percentage for this tariff dimension. If omitted, no VAT is
applicable, that is different from 0% VAT, which would be a value of 0.0
here.

step_size int 1 Minimum amount to be billed. This unit will be billed in this step_size
blocks. For example: if type is time and step_size is 300, then time will
be billed in blocks of 5 minutes, so if 6 minutes is used, 10 minutes (2
blocks of step_size) will be billed.

NOTE

step_size: depends on the type, every type (except FLAT) defines a step_size multiplier, this is the size of

every 'step' for that type in the gaven unit. For example: PARKING_TIME has 'step_size multiplier: 1 second' That

means that the step_size of a PriceComponent is multiplied by 1 second. Thus a step_size = 300

means 300 seconds = 5 minutes.

NOTE

step_size shall only be taken into account for the last TariffElement and when switching to another

TariffElement for the PriceComponents that are not in the new TariffElement. The same rule applies in

case there is a switch between 2 tariffs (for example when a driver selects a different Charging Preference

profile_type).

10.4.2.1. Examples tariff

Example tariff for explaining step_size when switching from one TariffElement to another:

• Charging cost 1.20 euro p/hour before 17:00, step_size: 30 minutes (1800 seconds)

• Charging cost 2.40 euro p/hour after 17:00, step_size: 15 minutes (900 seconds)

• Parking cost 1.00 euro p/hour before 20:00, step_size: 15 minutes (900 seconds)

OCPI 2.2-RC1

83



{
  "id": "22",
  "currency": "EUR",
  "elements": [
    {
      "price_components": [
        {
          "type": "TIME",
          "price": 1.20,
          "step_size": 1800
        },
        {
          "type": "PARKING_TIME",
          "price": 1.00,
          "step_size": 900
        }
      ],
      "restrictions" : {
        "start_time" : "00:00",
        "end_time" : "17:00"
      }
    },
    {
      "price_components": [
        {
          "type": "TIME",
          "price": 2.40,
          "step_size": 900
        },
        {
          "type": "PARKING_TIME",
          "price": 1.00,
          "step_size": 900
        }
      ],
      "restrictions" : {
        "start_time" : "17:00",
        "end_time" : "20:00"
      }
    },
    {
      "price_components": [
        {
          "type": "TIME",
          "price": 2.40,
          "step_size": 900
        }
      ],
      "restrictions" : {
        "start_time" : "20:00",
        "end_time" : "24:00"
      }
    }
  ],
  "last_updated": "2018-12-18T17:07:11Z"
}

10.4.2.2. Example switch to different price:

An EV driver plugs in at 16:55, charges for 10 min (TIME), stops charging but stays plugged in for 2 min (PARKING TIME), and then

leaves. Total session time = 12min.

• 5 billable minutes charging time before 17:00: 1.20 euro p/hour = 0.10 euro

• 10 billable minutes charging time after 17:00: 2.40 euro p/hour = 0.40 euro (10 minutes billed instead of 5: step_size is 15

minutes in the last tariff element, so total charging time is billed for 15 minutes)

• 15 billable minutes parking time: 1 euro p/hour = 0.25 euro

• 0.75 euro total for this session.

OCPI 2.2-RC1

84



10.4.2.3. Example switching to free tariff element:

When parking becomes free after 20:00, the new TariffElement after 20:00 will not contain a PARKING_TIME

PriceComponent. So the last parking period that needs to be payed, before 20:00, will be billed per step_size of the

PARKING_TIME PriceComponent before 20:00.

Example of this:

An EV driver plugs in at 19:55, charges for 10 min (TIME), stops charging but stays plugged in for 2 min (PARKING TIME), and then

leaves. Total session time = 12min.

• 5 billable minutes charging time before 20:00: 2.40 euro p/hour = 0.20 euro

• 10 billable minutes charging time after 20.00: 2.40 euro p/hour = 0.40 euro (10 minutes billed instead of 5: step_size is 15

minutes in the last tariff element, so total charging time is billed for 15 minutes)

• 15 billable minutes parking time: 1 euro p/hour = 0.25 euro (15 minutes billed instead of 5: step_size of the last

PARKING_TIME is 900: 15 minutes)

• 0.85 euro total for this session.

10.4.3. ReservationRestrictionType enum

Value Description

RESERVATION This TariffElement is for the cost associated with a reservation.

RESERVATION_EXPIRES This TariffElement is only for cost associated with a reservation that expires, driver does not start a
charging session before expiry_date.

NOTE
When a Tariff has both a RESERVATION and a RESERVATION_EXPIRES TariffElement, with both a TIME

PriceComponent, the time based cost of an expired reservation duration will be the price in the

RESERVATION_EXPIRES TariffElement.

10.4.4. TariffElement class

Property Type Card
.

Description

price_components PriceComponent + List of price components that make up the pricing of this tariff

restrictions TariffRestrictions ? Tariff restrictions object

10.4.5. TariffDimensionType enum

Value Description

ENERGY defined in kWh, step_size multiplier: 1 Wh

FLAT flat fee, no unit

PARKING_TIME time not charging: defined in hours, step_size multiplier: 1 second

TIME time charging: defined in hours, step_size multiplier: 1 second
Can also be used in combination with reservation for the the price of the reservation time.

10.4.6. TariffRestrictions class

OCPI 2.2-RC1

85



Property Type Card. Description

start_time string(5) ? Start time of day, for example 13:30, valid from this time of the day. Must be in
24h format with leading zeros. Hour/Minute separator: ":" Regex: [0-2][0-9]:[0-
5][0-9]

end_time string(5) ? End time of day, for example 19:45, valid until this time of the day. Same syntax
as start_time

start_date string(10) ? Start date, for example: 2015-12-24, valid from this day

end_date string(10) ? End date, for example: 2015-12-27, valid until this day (excluding this day)

min_kwh number ? Minimum used energy in kWh, for example 20, valid from this amount of energy
is used

max_kwh number ? Maximum used energy in kWh, for example 50, valid until this amount of energy
is used

min_power number ? Minimum power in kW, for example 0, valid from this charging speed

max_power number ? Maximum power in kW, for example 20, valid up to this charging speed

min_duration int ? Minimum duration in seconds, valid for a duration from x seconds

max_duration int ? Maximum duration in seconds, valid for a duration up to x seconds

day_of_week DayOfWeek * Which day(s) of the week this tariff is valid

reservation ReservationR
estrictionType

? When this field is present, this tariffElement is for a reservation. A reservation
starts when the reservation is made, and ends when the drivers start charging
on the reserved EVSE/Location, or when the reservation expires. A reservation
can only have: FLAT and TIME TariffDimensions, where TIME is for the duration
of the reservation.

10.4.7. TariffType enum

Value Description

AD_HOC_PAYMENT This tariff is valid when ad hoc payment is used at the Charge Point. Instead of an RFID token or
APP.

PROFILE_CHEAP This tariff is valid when Charging Preference: CHEAP is set on the session.

PROFILE_FAST This tariff is valid when Charging Preference: FAST is set on the session.

PROFILE_GREEN This tariff is valid when Charging Preference: GREEN is set on the session.

REGULAR This is the tariff when using an RFID, without any Charging Preference, or when Charging
Preference: REGULAR is set on the session.

OCPI 2.2-RC1

86



11. Tokens module

Module Identifier: tokens

Data owner: MSP

The tokens module gives CPOs knowledge of the token information of an eMSP. eMSPs can push Token information to CPOs,

CPOs can build a cache of known Tokens. When a request to authorize comes from a Charge Point, the CPO can check against

this cache. With this cached information they know to which eMSP they can later send a CDR.

11.1. Flow and Lifecycle

11.1.1. Push model

When the MSP creates a new Token object they push it to the CPO by calling PUT on the CPO’s Tokens endpoint with the newly

created Token object.

Any changes to Token in the eMSP system are sent to the CPO system by calling either the PUT or the PATCH on the CPO’s

Tokens endpoint with the updated Token(s).

When the eMSP invalidates a Token (deleting is not possible), the eMSP will send the updated Token (with the field: valid set to

false, by calling, either the PUT or the PATCH on the CPO’s Tokens endpoint with the updated Token.

When the eMSP is not sure about the state or existence of a Token object in the CPO system, the eMSP can call the GET to

validate the Token object in the CPO system.

11.1.2. Pull model

When a CPO is not sure about the state of the list of known Tokens, or wants to request the full list as a start-up of their system, the

CPO can call the GET on the eMSP’s Token endpoint to receive all Tokens, updating already known Tokens and adding new

received Tokens to it own list of Tokens. This is not intended for real-time operation, requesting the full list of tokens for every

authorization will put to much strain on systems. It is intended for getting in-sync with the server, or to get a list of all tokens (from a

server without push) every X hours.

11.1.3. Real-time authorization

An eMSP might want their Tokens to be authorized 'real-time', not white-listed. For this the eMSP has to implement the POST

Authorize request and set the Token.whitelist field to NEVER for Tokens they want to have authorized 'real-time'.

If an eMSP doesn’t want real-time authorization, the POST Authorize request doesn’t have to be implemented as long as all their

Tokens have Token.whitelist set to ALWAYS.

11.2. Interfaces and endpoints

There is both a CPO and an eMSP interface for Tokens. It is advised to use the push direction from eMSP to CPO during normal

operation. The eMSP interface is meant to be used when the CPO is not 100% sure the Token cache is still correct.

11.2.1. CPO Interface

With this interface the eMSP can push the Token information to the CPO. Tokens is a client owned object, so the end-points need to

contain the required extra fields: {party_id} and {country_code}.

Endpoint structure definition:

OCPI 2.2-RC1

87



{token_endpoint_url}{country_code}/{party_id}/{token_uid}

Example:

https://www.server.com/ocpi/cpo/2.2/tokens/NL/TNM/012345678

Method Description

GET Retrieve a Token as it is stored in the CPO system.

POST n/a

PUT Push new/updated Token object to the CPO.

PATCH Notify the CPO of partial updates to a Token.

DELETE n/a, (Use PUT, Tokens cannot be removed).

11.2.1.1. GET Method

If the eMSP wants to check the status of a Token in the CPO system it might GET the object from the CPO system for validation

purposes. The eMSP is the owner of the objects, so it would be illogical if the CPO system had a different status or was missing an

object.

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requi
red

Description

country_code CiString(2) yes Country code of the eMSP requesting this GET from the CPO system.

party_id CiString(3) yes Party ID (Provider ID) of the eMSP requesting this GET from the CPO system.

token_uid CiString(36) yes Token.uid of the Token object to retrieve.

Response Data

The response contains the requested object.

Type Card. Description

Token 1 The requested Token object.

11.2.1.2. PUT Method

New or updated Token objects are pushed from the eMSP to the CPO.

Request Body

In the put request a new or updated Token object is sent.

Type Card. Description

Token 1 New or updated Token object.

Request Parameters

The following parameters can be provided as URL segments.

OCPI 2.2-RC1

88



Parameter Datatype Requi
red

Description

country_code CiString(2) yes Country code of the eMSP sending this PUT request to the CPO system.

party_id CiString(3) yes Party ID (Provider ID) of the eMSP sending this PUT request to the CPO
system.

token_uid CiString(36) yes Token.uid of the (new) Token object (to replace).

Example: put a new Token

PUT To URL: https://www.server.com/ocpi/cpo/2.2/tokens/NL/TNM/012345678

{
  "uid": "012345678",
  "type": "RFID",
  "contract_id": "DE8ACC12E46L89",
  "visual_number": "DF000-2001-8999-1",
  "issuer": "TheNewMotion",
  "group_id": "DF000-2001-8999",
  "valid": true,
  "whitelist": "ALWAYS",
  "last_updated": "2015-06-29T22:39:09Z"
}

11.2.1.3. PATCH Method

Same as the PUT method, but only the fields/objects that have to be updated have to be present, other fields/objects that are not

specified are considered unchanged.

Example: invalidate a Token

PATCH To URL: https://www.server.com/ocpi/cpo/2.2/tokens/NL/TNM/012345678

{
  "valid": false
}

11.2.2. eMSP Interface

This interface enables the CPO to request the current list of Tokens, when needed. Via the POST method it is possible to authorize

a single token.

Method Description

GET Get the list of known Tokens, last updated between the {date_from} and {date_to} (paginated)

POST Real-time authorization request

PUT n/a

PATCH n/a

DELETE n/a

11.2.2.1. GET Method

Fetch information about Tokens known in the eMSP systems.

Endpoint structure definition:

{tokens_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={limi

OCPI 2.2-RC1

89



t}]

Examples:

https://www.server.com/ocpi/emps/2.2/tokens/?date_from=2019-01-28T12:00:00&date_to=2019-01-

29T12:00:00

https://ocpi.server.com/2.2/tokens/?offset=50

https://www.server.com/ocpi/2.2/tokens/?date_from=2019-01-29T12:00:00&limit=100

https://www.server.com/ocpi/emsp/2.2/tokens/?offset=50&amp;limit=100

Request Parameters

If additional parameters: {date_from} and/or {date_to} are provided, only Tokens with (last_updated) between the given

date_from and date_to will be returned.

This request is paginated, it supports the pagination related URL parameters. This request is paginated, it supports the pagination

related URL parameters.

Parameter Datatype Requi
red

Description

date_from DateTime no Only return Tokens that have last_updated after this Date/Time.

date_to DateTime no Only return Tokens that have last_updated before this Date/Time.

offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

Response Data

The endpoint response with list of valid Token objects, the header will contain the pagination related headers.

Any older information that is not specified in the response is considered as no longer valid. Each object must contain all required

fields. Fields that are not specified may be considered as null values.

Type Card. Description

Token * List of all tokens.

11.2.2.2. POST Method

Do a 'real-time' authorization request to the eMSP system, validating if a Token might be used (at the optionally given Location).

Endpoint structure definition:

{tokens_endpoint_url}{token_uid}/authorize[?{type=token_type}]

The /authorize is required for the real-time authorize request.

Examples:

https://www.server.com/ocpi/emps/2.2/tokens/012345678/authorize

https://ocpi.server.com/2.2/tokens/012345678/authorize?type=RFID

When the eMSP receives a 'real-time' authorization request from a CPO that contains too little information (no LocationReferences

provided) to determine if the Token might be used, the eMSP SHOULD respond with the OCPI status: 2002

OCPI 2.2-RC1

90



Request Parameters

The following parameter has to be provided as URL segments.

Parameter Datatype Requi
red

Description

token_uid CiString(36) yes Token.uid of the Token for which this authorization is.

token_type TokenType no Token.type of the Token for which this authorization is. Default if omitted: RFID

Request Body

In the body an optional LocationReferences object can be given. The eMSP SHALL then validate if the Token is allowed to be used

at this Location, and if applicable: which of the Locations EVSEs/Connectors. The object with valid Location and

EVSEs/Connectors will be returned in the response.

Type Card. Description

LocationReferences ? Location and EVSEs/Connectos for which the Token is requested to be authorized.

Response Data

The endpoint response contains a AuthorizationInfo object.

Type Card. Description

AuthorizationInfo 1 Contains information about the authorization, if the Token is allowed to charge and
optionally which EVSEs/Connectors are allowed to be used.

11.3. Object description

11.3.1. AuthorizationInfo Object

Property Type Card. Description

allowed Allowed 1 Status of the Token, and whether charging is allowed at the optionally given
location.

location LocationRefer
ences

? Optional reference to the location if it was included in the request, and if the EV
driver is allowed to charge at that location. Only the EVSEs/Connectors the EV
driver is allowed to charge at are returned.

info DisplayText ? Optional display text, additional information to the EV driver.

11.3.2. Token Object

Property Type Card. Description

uid CiString(36) 1 Unique ID by which this Token can be identified.
This is the field used by CPO system (RFID reader on the Charge Point) to
identify this token.
Currently, in most cases: type=RFID, this is the RFID hidden ID as read by the
RFID reader, but that is not a requirement.
If this is a type=APP_USER Token, it will be a uniquely, by the MSP, generated
ID.
This field is named uid instead of id to prevent confusion with: contract_id.

type TokenType 1 Type of the token

OCPI 2.2-RC1

91



Property Type Card. Description

contract_id CiString(36) 1 Uniquely identifies the EV Driver contract token within the eMSP’s platform (and
suboperator platforms). Recommended to follow the specification for eMA ID
from "eMI3 standard version V1.0" (http://emi3group.com/documents-links/)
"Part 2: business objects."

visual_number string(64) ? Visual readable number/identification as printed on the Token (RFID card), might
be equal to the contract_id.

issuer string(64) 1 Issuing company, most of the times the name of the company printed on the
token (RFID card), not necessarily the eMSP.

group_id CiString(36) ? This ID groups a couple of tokens. This can be used to make two or more
tokens work as one, so that a session can be started with one token and
stopped with another, handy when a card and key-fob are given to the EV-driver.
Beware that OCPP 1.5/1.6 only support group_ids (it is called parentId in OCPP
1.5/1.6) with a maximum length of 20.

valid boolean 1 Is this Token valid

whitelist WhitelistType 1 Indicates what type of white-listing is allowed.

language string(2) ? Language Code ISO 639-1. This optional field indicates the Token owner’s
preferred interface language. If the language is not provided or not supported
then the CPO is free to choose its own language.

default_profile_type ProfileType ? The default Charging Preference. When this is provided, and a charging session
is started on an Charge Point that support Preference base Smart Charging and
support this ProfileType, the Charge Point can start using this ProfileType,
without this having to be set via: Set Charging Preferences.

energy_contract EnergyContra
ct

? When the Charge Point supports using your own energy supplier/contract at a
Charge Point, information about the energy supplier/contract is needed so the
CPO knows which energy supplier to use. 
NOTE: In a lot of countries it is currently not allowed/possible to use a drivers
own energy supplier/contract at a Charge Point.

last_updated DateTime 1 Timestamp when this Token was last updated (or created).

The combination of uid and type should be unique for every token within the eMSP’s system.

NOTE
OCPP supports group_id (or ParentID as it is called in OCPP 1.5/1.6) OCPP 1.5/1.6 only support group ID’s with

maximum length of string(20), case insensitive. As long as EV-driver can be expected to charge at an OCPP

1.5/1.6 Charge Point, it is adviced to not used a group_id longer then 20.

11.3.2.1. Examples

Simple APP_USER example

{
  "uid": "bdf21bce-fc97-11e8-8eb2-f2801f1b9fd1",
  "type": "APP_USER",
  "contract_id": "DE8ACC12E46L89",
  "issuer": "TheNewMotion",
  "valid": true,
  "whitelist": "ALLOWED",
  "last_updated": "2018-12-10T17:16:15Z"
}

Full RFID example

OCPI 2.2-RC1

92

http://emi3group.com/documents-links/


{
  "uid": "12345678905880",
  "type": "RFID",
  "contract_id": "DE8ACC12E46L89",
  "visual_number": "DF000-2001-8999-1",
  "issuer": "TheNewMotion",
  "group_id": "DF000-2001-8999",
  "valid": true,
  "whitelist": "ALLOWED",
  "language": "it",
  "default_profile_type": "GREEN",
  "energy_contract": {
    "supplier_name": "Greenpeace Energy eG",
    "contract_id": "0123456789"
  },
  "last_updated": "2018-12-10T17:25:10Z"
}

11.4. Data types

11.4.1. Allowed enum

Value Description

ALLOWED This Token is allowed to charge at this location.

BLOCKED This Token is blocked.

EXPIRED This Token has expired.

NO_CREDIT This Token belongs to an account that has not enough credits to charge at the given location.

NOT_ALLOWED Token is valid, but is not allowed to charge at the given location.

11.4.2. EnergyContract class

Information about a energy contract that belongs to a Token so a driver could use his/her own energy contract when charging at a

Charge Point.

Property Type Card. Description

supplier_name string(64) 1 Name of the energy supplier for this token.

contract_id string(64) ? Contract ID at the energy supplier, that belongs to the owner of this token.

11.4.3. LocationReferences class

References to location details.

Property Type Card. Description

location_id CiString(36) 1 Unique identifier for the location.

evse_uids CiString(36) * Unique identifier for EVSEs within the CPO’s platform for the EVSE within the
the given location.

connector_ids CiString(36) * Identifies the connectors within the given EVSEs.

11.4.4. TokenType enum

Value Description

APP_USER Token ID generated by a server (or App.) to identify a user of an App.

OCPI 2.2-RC1

93



Value Description

OTHER Other type of token

RFID RFID Token

11.4.5. WhitelistType enum

Defines when authorization of a Token by the CPO is allowed.

Value Description

ALWAYS Token always has to be whitelisted, realtime authorization is not possible/allowed. CPO shall
always allow any use of this Token.

ALLOWED It is allowed to whitelist the token, realtime authorization is also allowed. The CPO may choose
which version of authorization to use.

ALLOWED_OFFLINE In normal situations realtime authorization shall be used. But when the CPO cannot get a response
from the eMSP (communication between CPO and eMSP is offline), the CPO shall allow this Token
to be used.

NEVER Whitelisting is forbidden, only realtime authorization is allowed. CPO shall always send a realtime
authorization for any use of this Token to the eMSP.

OCPI 2.2-RC1

94



12. Commands module

Module Identifier: commands

The Commands module enables remote commands to be sent to a Location/EVSE. The following commands are supported:

• RESERVE_NOW

• CANCEL_RESERVATION

• START_SESSION

• STOP_SESSION

• UNLOCK_CONNECTOR

See CommandType for a description of the different commands. Use the UNLOCK_CONNECTOR command with care, please read

the note at CommandType.

Module dependency: Locations module, Sessions module

12.1. Flow

With the Commands module, commands can be sent from the eMSP, via the CPO to a Charge Point. Most Charge Point are

hooked up to the internet via a relative slow wireless connection. To prevent long blocking calls, the commands module is designed

to work asynchronously.

The eMSP send a request to a CPO, via the CPO Commands interface. The CPO checks if it can send the request to a Charge

Point and will respond to the request with a status, indicating if the request can be sent to a Charge Point.

The CPO sends the requested command (via another protocol, for example: OCPP) to a Charge Point. The Charge Point will

respond if it understands the command and will try to execute the command. This response doesn’t always mean that the

command was executed successfully. The CPO will forward the result in a new POST request to the eMSP Commands interface.

The following examples try to give insight into the message flow and the asynchronous nature of the OCPI Commands.

Example of a START_SESSION that is accepted, but no new Session is started because EV not plugged in before end of time-out.

This is an example for Charge Point that allows a remote start when the cable is not yet plugged in. Some Charge Points even

require this, there might, for example, be a latch in front of the socket to prevent vandalism.

OCPI Command START_SESSION -> ACCEPTED but EV never plugged in

eMSP CPO Charge Point

Command(START_SESSION, location_id=1234, token=200)

status_code = 1000, data: {CommandResponse { result = ACCEPTED }}

RemoteStartTransaction.req(Token=200)

RemoteStartTransaction.conf(Accepted)

CommandResult(result = FAILED)

EV NOT Plugged in before time-out

Figure 9. START_SESSION failed

Example of a START_SESSION that is accepted, but no new Session is started because the EV is not plugged in, and this Charge

Point does not allow a remote start without a cable already being plugged in.

OCPI 2.2-RC1

95



OCPI Command START_SESSION -> REJECT by Charge Point: no cable plugged in

eMSP CPO Charge Point

EV NOT Plugged in

Command(START_SESSION, location_id=1234, token=200)

status_code = 1000, data: {CommandResponse { result = ACCEPTED }}

RemoteStartTransaction.req(Token=200)

RemoteStartTransaction.conf(Rejected)

CommandResult(result = FAILED)

Figure 10. START_SESSION failed

Example of a START_SESSION that is accepted and results in a new Session.

OCPI Command START_SESSION -> ACCEPTED and Session started

eMSP CPO Charge Point

Command(START_SESSION, location_id=1234, token=200)

status_code = 1000, data: {CommandResponse { result = ACCEPTED }}

RemoteStartTransaction.req(Token=200)

RemoteStartTransaction.conf(Accepted)

CommandResult(result = ACCEPTED)

EV Plugged in

StartTransaction.req(Token=200)

StartTransaction.conf(TransactionId=15)

Session(id=15, token=200, location_id=1234)

Figure 11. START_SESSION successful

Example of a UNLOCK_CONNECTOR that fails because the Location is not known by the CPO.

OCPI Command UNLOCK_CONNECTOR -> Unknown Location

eMSP CPO

Command(UNLOCK_CONNECTOR, location_id=1234, evse_uid=1234, connector=1)

status_code = 2003, data: {CommandResponse { result = REJECTED }}

2003 = Unknown Location

Figure 12. UNLOCK_CONNECTOR Unknown Location

Example of a RESERVE_NOW that is rejected by the Charge Point.

OCPI 2.2-RC1

96



OCPI Command RESERVE_NOW -> REJECTED by Charge Point

eMSP CPO Charge Point

Command(RESERVE_NOW, location_id=1234, token=200, reservationId=2)

status_code = 1000, data: {CommandResponse { result = ACCEPTED }}

ReserveNow.req(idTag=200, reservationId=2)

ReserveNow.conf(Rejected)

CommandResult(result = REJECTED)

Figure 13. RESERVE_NEW rejected by Charge Point

These examples use OCPP 1.6 based commands between CPO and Charge Point, but that is not a requirement for OCPI.

12.2. Interfaces and endpoints

The commands module consists of two interfaces: a CPO interface that enables a eMSP (and its clients) to send commands to a

Location/EVSE and an eMSP interface to receive the response from the Location/EVSE asynchronously.

12.2.1. CPO Interface

Endpoint structure definition:

{commands_endpoint_url}{command}

Examples:

https://www.server.com/ocpi/cpo/2.2/commands/START_SESSION

https://ocpi.server.com/commands/STOP_SESSION

https://server.com/ocpi/cpo/2.2/commands/RESERVE_NOW

Example endpoint structure: ``

Method Description

GET n/a

POST Send a command to the CPO, requesting the CPO to send the command to the Charge Point

PUT n/a

PATCH n/a

DELETE n/a

12.2.1.1. POST Method

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requi
red

Description

command CommandTyp
e

yes Type of command that is requested.

OCPI 2.2-RC1

97



12.2.1.2. Request Body

Depending on the command parameter the body SHALL contain the applicable object for that command.

Type Card. Description

Choice: one of five

> CancelReservation 1 CancelReservation object, for the CANCEL_RESERVATION command, with information
needed to cancel an existing reservation.

> ReserveNow 1 ReserveNow object, for the RESERVE_NOW command, with information needed to reserve
a (specific) connector of a Charge Point for a given Token.

> StartSession 1 StartSession object, for the START_SESSION command, with information needed to start a
sessions.

> StopSession 1 StopSession object, for the STOP_SESSION command, with information needed to stop a
sessions.

> UnlockConnector 1 UnlockConnector object, for the UNLOCK_CONNECTOR command, with information needed
to unlock a connector of a Charge Point.

Response Data

The response contains the direct response from the CPO, not the response from the Charge Point itself, that will be sent via an

asynchronous POST on the eMSP interface if this response is ACCEPTED.

Datatype Card. Description

CommandResponse 1 Result of the command request, by the CPO (not the Charge Point). So this indicates if the
CPO understood the command request and was able to send it to the Charge Point. This is
not the response by the Charge Point

12.2.2. eMSP Interface

The eMSP interface receives the asynchronous responses.

Endpoint structure definition:

No structure defined. This is open to the MSP to define, the URL is provided to the CPO by the MSP in the POST to the CPO

interface. Therefor OCPI does not define variables.

Example:

https://www.server.com/ocpi/emsp/2.2/commands/{command}

https://ocpi.server.com/commands/{command}/{uid}

Method Description

GET n/a

POST Receive the asynchronous response from the Charge Point.

PUT n/a

PATCH n/a

DELETE n/a

12.2.2.1. POST Method

Endpoint structure definition:

OCPI 2.2-RC1

98



It is up to the implementation of the eMSP to determine what parameters are put in the URL. The eMSP sends a URL in the POST

method body to the CPO. The CPO is required to use this URL for the asynchronous response by the Charge Point. It is advised to

make this URL unique for every request to differentiate simultaneous commands, for example by adding a unique id as a URL

segment.

Examples:

https://www.server.com/ocpi/emsp/2.2/commands/RESERVE_NOW/1234

https://www.server.com/ocpi/emsp/2.2/commands/UNLOCK_CONNECTOR/2

12.2.2.2. Request Body

Datatype Card. Description

CommandResult 1 Result of the command request, from the Charge Point.

12.3. Object description

12.3.1. CancelReservation Object

Property Type Card. Description

response_url URL 1 URL that the CommandResponse POST should be send to. This URL might
contain an unique ID to be able to distinguish between ReserveNow requests.

reservation_id int 1 Reservation id, unique for this reservation. If the Charge Point already has a
reservation that matches this reservationId the Charge Point will replace the
reservation.

12.3.2. CommandResponse Object

The CommandResponse object is send in the HTTP response body.

Because OCPI does not allow/require retries, it could happen that the asynchronous result url given by the eMSP is never

successfully called. The eMSP might have had a glitch, HTTP 500 returned, was offline for a moment etc. For the eMSP to be able

to give a quick as possible response to another system or driver app. it is important for the eMSP to known the timeout on a certain

command.

Property Type Card. Description

result CommandResponseType 1 Response from the CPO on the command request.

timeout int 1 Timeout for this command in seconds. When the Result is not received
within this timeout, the eMSP can assume that the message might never be
send.

message DisplayText ? Human-readable description of the result (if one can be provided), multiple
languages can be provided.

12.3.3. CommandResult Object

Property Type Card. Description

result CommandResultType 1 Result of the command request as sent by the Charge Point to the CPO.

message DisplayText ? Human-readable description of the reason (if one can be provided),
multiple languages can be provided.

OCPI 2.2-RC1

99



12.3.4. ReserveNow Object

The evse_uid is optional. If no EVSE is specified, the Charge Point should keep one EVSE available for the EV Driver identified

by the given Token. (This might not be supported by all Charge Points). A reservation can be replaced/updated by sending a

RESERVE_NOW request with the same Location (Charge Point) and the same reservation_id.

Property Type Card. Description

response_url URL 1 URL that the CommandResponse POST should be send to. This URL might
contain an unique ID to be able to distinguish between ReserveNow requests.

token Token 1 Token object for how to reserve this Charge Point (and specific EVSE).

expiry_date DateTime 1 The Date/Time when this reservation ends.

reservation_id int 1 Reservation id, unique for this reservation. If the Charge Point already has a
reservation that matches this reservationId the Charge Point will replace the
reservation.

location_id CiString(36) 1 Location.id of the Location (belonging to the CPO this request is send to) for
which to reserve an EVSE.

evse_uid CiString(36) ? Optional EVSE.uid of the EVSE of this Location if a specific EVSE has to be
reserved.

12.3.5. StartSession Object

The evse_uid is optional. If no EVSE is specified, the Charge Point can itself decide on which EVSE to start a new session. (this

might not be supported by all Charge Points).

Property Type Card. Description

response_url URL 1 URL that the CommandResponse POST should be sent to. This URL might
contain an unique ID to be able to distinguish between StartSession requests.

token Token 1 Token object the Charge Point has to use to start a new session.

location_id CiString(36) 1 Location.id of the Location (belonging to the CPO this request is send to) on
which a session is to be started.

evse_uid CiString(36) ? Optional EVSE.uid of the EVSE of this Location on which a session is to be
started.

12.3.6. StopSession Object

Property Type Card. Description

response_url URL 1 URL that the CommandResponse POST should be sent to. This URL might
contain an unique ID to be able to distinguish between StopSession requests.

session_id CiString(36) 1 Session.id of the Session that is requested to be stopped.

12.3.7. UnlockConnector Object

Property Type Card. Description

response_url URL 1 URL that the CommandResponse POST should be sent to. This URL might
contain an unique ID to be able to distinguish between UnlockConnector
requests.

location_id CiString(36) 1 Location.id of the Location (belonging to the CPO this request is send to) of
which it is requested to unlock the connector.

evse_uid CiString(36) 1 EVSE.uid of the EVSE of this Location of which it is requested to unlock the
connector.

connector_id CiString(36) 1 Connector.id of the Connector of this Location of which it is requested to unlock.

OCPI 2.2-RC1

100



12.4. Data types

12.4.1. CommandResponseType enum

Response to the command request from the MSP to the CPO.

Value Description

NOT_SUPPORTED The requested command is not supported by this CPO, Charge Point, EVSE etc.

REJECTED Command request rejected by the CPO. (Session might not be from a customer of the MSP that
send this request)

ACCEPTED Command request accepted by the CPO.

UNKNOWN_SESSION The Session in the requested command is not known by this CPO.

12.4.2. CommandResultType enum

Result of the command that was send to the Charge Point.

Value Description

ACCEPTED Command request accepted by the Charge Point.

EVSE_OCCUPIED EVSE is currently occupied, another session is ongoing. Cannot start a new session

EVSE_INOPERATIVE EVSE is currently inoperative or faulted.

FAILED Execution of the command failed at the Charge Point.

NOT_SUPPORTED The requested command is not supported by this Charge Point, EVSE etc.

REJECTED Command request rejected by the Charge Point.

TIMEOUT Command request timeout, no response received from the Charge Point in a reasonable
time.

UNKNOWN_RESERVATION The Reservation in the requested command is not known by this Charge Point.

12.4.3. CommandType enum

The command requested.

Value Description

CANCEL_RESERVATION Request the Charge Point to cancel a specific reservation.

RESERVE_NOW Request the Charge Point to reserve a (specific) EVSE for a Token for a certain time, starting now.

START_SESSION Request the Charge Point to start a transaction on the given EVSE/Connector.

STOP_SESSION Request the Charge Point to stop an ongoing session.

UNLOCK_CONNECTOR Request the Charge Point to unlock the connector (if applicable). This functionality is for help desk
operators only!

The command UNLOCK_CONNECTOR may only be used by an operator or the eMSP. This command SHALL never be allowed

to be sent directly by the EV-Driver. The UNLOCK_CONNECTOR is intended to be used in the rare situation that the connector

is not unlocked successfully after a transaction is stopped. The mechanical unlock of the lock mechanism might get

stuck, for example: fail when there is tension on the charging cable when the Charge Point tries to unlock the connector.

In such a situation the EV-Driver can call either the CPO or the eMSP to retry the unlocking.

OCPI 2.2-RC1

101



13. ChargingProfiles module

Module Identifier: charging_profiles

With the ChargingProfiles module, parties (MSPs) can send (Smart) Charging Profiles to a Location/EVSE. It is also possible to

request the 'CompositeProfile' from a Location/EVSE.

The ChargingProfile is similar to the concept of Charging Profiles in OCPP, but exposes this functionality to third parties. These

objects and the accompanying interfaces make certain abstractions that make them more suitable for energy parties to signal their

intent. The data structures are base on OCPP 1.6 and 2.0 to make conversion of messages between OCPI and OCPP easy.

NOTE

Charging Profiles set via this module are no garantue that the EV will charge with the exact given limit. A lot of

factors influence the charging speed. The EV might not take the amount of energy that the EVSE is willing to

provide to it. The battery might be to warm. The cable might be one phase on a three phase charger etc. There

can be local energy limits (load balancing between EVSE on a relative small energy connection to a group of

EVSEs) that limit the energy offered by EVSE to the EV even further.

ChargingProfile can be created by the owner of a Token on Sessions that belong to that token. If another party sends a

ChargingProfile and the CPO has no contract that allows that party to set profiles on sessions, the CPO is allowed to reject such

profiles.

This module can be used by the MSP, but can also be used by another party that provide "Smart Charging Services" (Smart

Charging Service Provider (SCSP) / Aggregator / Energy Service Broker etc.) These SCSPs then depend on the CPO sending

session information to them. They need to know which session is ongoing to be able to influence it. If a SCSP uses this module,

read eMSP as SCSP.

NOTE
OCPI provides the means for SCSPs to do this. Parties doing this have to oblige local privacy laws, have to have

setup contracts etc. Local laws might oblige explicit consent from the driver etc.

The CompositeProfile is the charging schedule as calculated by the EVSE. It is the result of the calculation of all smart charging

inputs present in the EVSE, also Local Limits might be taken into account.

Module dependency: Sessions module

13.1. Use Cases

TODO

• An eMSP sends a ChargingProfile to manipulate an ongoing charging session of one of its customers.

• An eMSP request the planned ChargingProfile for an ongoing charging session for a customer of the MSP.

• An eMSP request to remove the set ChargingProfile from an ongoing charging session for a customer of the MSP.

• The CPO updates the eMSP of changes to an CompositeSchedule.

• Energy contract meenemen naar publieke laadpaal -

13.2. Flow

The ChargingProfile creation is a request to activate a charging profile on a running charging session.

Most Charge Points are hooked up to the internet via a relative slow wireless connection. To prevent long blocking calls, the

ChargingProfile module is designed to work asynchronously. (similar to the Commands module.

The eMSP send a request to a CPO, via the CPO Commands interface. The CPO checks if it can send the request to a Charge

Point and will respond to the request with a status, indicating if the request can be sent to a Charge Point.

OCPI 2.2-RC1

102



The CPO sends the requested command (via another protocol, for example: OCPP) to a Charge Point. The Charge Point will

respond if it understands the command and will try to execute the command. This response doesn’t always mean that the

ChargingProfile will be executed. The CPO will forward the result in a new POST request to the eMSP ChargingProfile interface.

The eMSP can send the Charging Profile to the EVSE via the CPO by using the CPO PUT method for an ongoing session. The

eMSP can request the current schedule the EVSE has calculated, based on different inputs, and is planned to be used for the

ongoing session by calling the CPO GET method. The eMSP has the ability to remove the Charging Profile for the session by

calling the CPO DELETE method

When the eMSP has (at least once) successfully send a Charging Profile for an ongoing charging session, the CPO keeps the

eMSP updated of changes to the CompositeSchedule, if the CPO is aware of any changes, by calling the MSP PUT method

The CPO can cancel an existing ChargingProfile, it can let the eMSP know by calling the MSP PUT method

TODO Added examples for:

• GetCompositeProfile

• SetChargingProfile

• ClearChargingProfile

• UpdateCompositeSchedule

TODO Add examples

13.3. Interfaces and endpoints

The ChargingProfiles module consists of two interfaces: a CPO interface that enables a eMSP (and its clients) to send

ChargingProfiles to a Location/EVSE, and an eMSP interface to receive the response from the Location/EVSE asynchronously.

13.3.1. CPO Interface

ChargingProfiles is a client owned object, so the end-points need to contain the required extra fields: {party_id} and {country_code}.

Example endpoint structures:

Method Description

GET Gets the active ChargingProfile for a specific charging session.

POST n/a

PUT Creates/updates a ChargingProfile for a specific charging session.

PATCH n/a

DELETE Cancels an existing ChargingProfile for a specific charging session.

13.3.1.1. GET Method

Retrieves the Composite ChargingProfile as it is currently planned for the the given session.

Endpoint structure definition:

{chargingprofiles_endpoint_url}{session_id}?duration={duration}&response_url={url}

Example:

https://www.cpo.com/ocpi/2.2/chargingprofiles/1234?duration=900&response_url=https://www.msp.com

/ocpi/2.2/chargingprofile/response?request_id=5678

OCPI 2.2-RC1

103



NOTE As it is not common to add a body to a GET request, all parameters are added to the URL.

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requi
red

Description

session_id CiString(36) yes The unique id that identifies the session in the CPO platform.

duration int 1 Length of the requested CompositeSchedule in seconds Duration in seconds. *

response_url URL 1 URL that the CompositeProfileResult POST should be send to. This URL might
contain an unique ID to be able to distinguish between GET Composite
ChargingProfile requests.

NOTE

duration: Use this wisely. Asking for a schedule hours in advance might not be very useful. But will use more

mobile data then really useful. Duration of half hour, one full hour can be really useful when checking the profile

calculated by the Charging Station. Longer might be less useful as lot can change during the time that will have

influence on the profile.

Response Data

The response contains the direct response from the CPO, not the response from the EVSE itself, that will be sent via an

asynchronous POST on the eMSP interface if this response is ACCEPTED.

Datatype Card. Description

ChargingProfileResponse 1 Result of the Composite ChargingProfile request, by the CPO (not the location/EVSE). So
this indicates if the CPO understood the ChargingProfile request and was able to send it to
the EVSE. This is not the response by the Charge Point.

13.3.1.2. PUT Method

Creates a new ChargingProfile on a session, or replaces an existing ChargingProfile on the EVSE.

Endpoint structure definition:

{chargingprofiles_endpoint_url}{session_id}

Example:

https://www.cpo.com/ocpi/2.2/chargingprofiles/1234

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requi
red

Description

session_id CiString(36) yes The unique id that identifies the session in the CPO platform.

13.3.1.3. Request Body

The body contains an SetChargingProfile object, that contains the new ChargingProfile and a response URL.

OCPI 2.2-RC1

104



Type Card. Description

SetChargingProfile 1 SetChargingProfile object with information needed to set/update the Charging Profile for a
session.

Response Data

The response contains the direct response from the CPO, not the response from the EVSE itself, that will be sent via an

asynchronous POST on the eMSP interface if this response is ACCEPTED.

Datatype Card. Description

ChargingProfileResponse 1 Result of the ChargingProfile PUT request, by the CPO (not the location/EVSE). So this
indicates if the CPO understood the ChargingProfile PUT request and was able to send it
to the EVSE. This is not the response by the Charge Point.

13.3.1.4. DELETE Method

Clears the ChargingProfile set by the MSP on the given session.

Endpoint structure definition:

{chargingprofiles_endpoint_url}{session_id}?response_url={url}

Example:

https://www.cpo.com/ocpi/2.2/chargingprofiles/1234?response_url=https://www.server.com/example

NOTE As it is not common to add a body to a DELETE request, all parameters are added to the URL.

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requi
red

Description

session_id CiString(36) yes The unique id that identifies the session in the CPO platform.

response_url URL 1 URL that the ClearProfileResult POST should be send to. This URL might
contain an unique ID to be able to distinguish between GET Composite
ChargingProfile requests.

Response Data

The response contains the direct response from the CPO, not the response from the EVSE itself, that will be sent via an

asynchronous POST on the eMSP interface if this response is ACCEPTED.

Datatype Card. Description

ChargingProfileResponse 1 Result of the ChargingProfile DELETE request, by the CPO (not the location/EVSE). So
this indicates if the CPO understood the ChargingProfile DELETE request and was able to
send it to the EVSE. This is not the response by the Charge Point.

13.3.2. eMSP Interface

The eMSP interface receives the asynchronous responses.

OCPI 2.2-RC1

105



Method Description

GET n/a

POST Receive the asynchronous response from the Charge Point.

PUT CPO can send an updated composite schedule when other inputs have made changes to existing schedule.
When the CPO sends a update schedule to the EVSE, for an other reason then the MSP, the CPO SHALL post
an update to this interface. When a local input influence the CompositeSchedule in the EVSE AND the CPO is
made aware of this, the CPO SHALL post an update to this interface.

PUT n/a

PATCH n/a

DELETE n/a

13.3.2.1. POST Method

Request Parameters

There are no URL segment parameters required by OCPI.

As the eMSP interface is called by the CPO on the URL given response_url in the MSP request to the CPO interface, It is up to

the implementation of the eMSP to determine what parameters are put in the URL. The eMSP sends a URL in the POST method

body to the CPO. The CPO is required to use this URL for the asynchronous response by the Charge Point. It is advised to make

this URL unique for every request to differentiate simultaneous commands, for example by adding a unique id as a URL segment.

Endpoint structure definition:

No structure defined. This is open to the MSP to define, the URL is provided to the CPO by the MSP. Therefor OCPI does not

define variables.

Examples:

https://www.server.com/ocpi/2.2/chargingprofiles/chargingprofile/12345678

https://www.server.com/compositeschedule/12345678

https://www.server.com/clearprofile?request_id=12345678

https://www.server.com/ocpi/2.2/12345678

The content of the request body depends on the original request by the MSP to which this POST is send as a result.

13.3.2.2. Request Body

Datatype Card. Description

Choice: one of three

CompositeProfileResult 1 Result of the GET CompositeProfile request, from the Charge Point.

ChargingProfileResult 1 Result of the PUT ChargingProfile request, from the Charge Point.

ClearProfileResult 1 Result of the DELETE ChargingProfile request, from the Charge Point.

13.3.2.3. Response Body

The response to the POST on the eMSP interface SHALL contain the Response Format with the data field omitted.

OCPI 2.2-RC1

106



13.3.2.4. PUT Method

Updates the eMSP when the CPO knows the CompositeSchedule has changed.

The CPO SHALL call this interface every time it knows changes have been made that influence the CompositeProfile for an

ongoing session AND the eMSP has at least once successfully called the charging profile CPO PUT interface for this session

(SetChargingProfile). If the CPO doesn’t know the composite schedule has changed (EVSE does not notify the CPO of the change)

it is not required to call this interface.

The CPO SHALL NOT call this interface for any session where the eMSP has never, successfully called the charging profile CPO

PUT interface for this session (SetChargingProfile).

The CPO SHALL send a useful relevant duration of CompositeSchedule to send to the eMSP. As a guide: between 5 and 60

minutes. If the eMSP wants a longer CompositeSchedule the eMSP can always do a GEt with a longer duration.

Endpoint structure definition:

{chargingprofiles_endpoint_url}{session_id}

Example:

`https://www.server.com/ocpi/2.2/chargingprofiles/1234`

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requi
red

Description

session_id CiString(36) yes The unique id that identifies the session in the CPO platform.

13.3.2.5. Request Body

The body contains an SetChargingProfile object, that contains the new ChargingProfile and a response URL.

Type Card. Description

schedule Com
posit
eProfi
le

1

13.3.2.6. Response Body

The response to the PUT on the eMSP interface SHALL contain the Response Format with the data field omitted.

13.4. Object description

13.4.1. ChargingProfileResponse Object

The ChargingProfileResponse object is send in the HTTP response body.

Because OCPI does not allow/require retries, it could happen that the asynchronous result url given by the eMSP is never

successfully called. The eMSP might have had a glitch, HTTP 500 returned, was offline for a moment etc. For the eMSP to be able

to reject to timeouts, it is important for the eMSP to known the timeout on a certain command.

OCPI 2.2-RC1

107



Property Type Card. Description

result ResponseType 1 Response from the CPO on the ChargingProfile request.

timeout int 1 Timeout for this ChargingProfile request in seconds. When the Result is not
received within this timeout, the eMSP can assume that the message might
never be send.

13.4.2. CompositeProfileResult Object

The CompositeProfileResult object is send by the CPO to the given response_url in a POST request. It contains the result of the

GET (GetCompositeProfile) request send by the MSP.

Property Type Card. Description

result ResultType 1 The EVSE will indicate if it was able to process the request for the
Composite Profile

schedule CompositeProfile ? The requested composite profile, if the result field is set to: ACCEPTED

13.4.3. ChargingProfileResult Object

The ChargingProfileResult object is send by the CPO to the given response_url in a POST request. It contains the result of the

PUT (SetChargingProfile) request send by the MSP.

Property Type Card. Description

result ResultType 1 The EVSE will indicate if it was able to process the new/updated charging
profile.

13.4.4. ClearProfileResult Object

The ClearProfileResult object is send by the CPO to the given response_url in a POST request. It contains the result of the

DELETE (ClearProfile) request send by the MSP.

result ResultType 1 The EVSE will indicate if it was able to process the removal of the
charging profile (ClearChargingProfile).

13.4.5. SetChargingProfile Object

Object set to a CPO to set a Charging Profile.

Property Type Card. Description

charging_sch
edule

[mod_charging_profiles_char
ging_schedule_object]

1 Contains limits for the available power or current over time.

response_url URL 1 URL that the ChargingProfileResult POST should be send to. This URL
might contain an unique ID to be able to distinguish between GET
Composite ChargingProfile requests.

13.5. Data types

13.6. ChargingRateUnit enum

Unit in which a charging schedule is defined.

OCPI 2.2-RC1

108



Value Description

W Watts (power)
This is the TOTAL allowed charging power. If used for AC Charging, the phase current should be
calculated via: Current per phase = Power / (Line Voltage * Number of Phases). The "Line Voltage"
used in the calculation is not the measured voltage, but the set voltage for the area (hence, 230 of
110 volt). The "Number of Phases" is the numberPhases from the ChargingSchedulePeriod. It is
usually more convenient to use this for DC charging. Note that if numberPhases in a
ChargingSchedulePeriod is absent, 3 SHALL be assumed.

A Amperes (current)
The amount of Ampere per phase, not the sum of all phases. It is usually more convenient to use
this for AC charging.

13.7. ChargingSchedule class

Charging schedule class defines a list of charging periods.

Property Type Card. Description

start_schedule_period DateTime ? Starting point of an absolute schedule. If absent the schedule will be relative to
start of charging.

duration int ? Duration of the charging schedule in seconds. If the duration is left empty, the
last period will continue indefinitely or until end of the transaction in case
startSchedule is absent.

charging_rate_unit ChargingRate
Unit

1 The unit of measure Limit is expressed in.

min_charging_rate number ? Minimum charging rate supported by the EV. The unit of measure is defined by
the chargingRateUnit. This parameter is intended to be used by a local smart
charging algorithm to optimize the power allocation for in the case a charging
process is inefficient at lower charging rates. Accepts at most one digit fraction
(e.g. 8.1)

charging_schedule_pe
riod

ChargingSche
dulePeriod

* List of ChargingSchedulePeriod elements defining maximum power or current
usage over time.

13.8. ChargingSchedulePeriod class

Charging schedule period structure defines a time period in a charging schedule, as used in: ChargingSchedule

Property Type Card. Description

start_period int 1 Start of the period, in seconds from the start of schedule. The value of
StartPeriod also defines the stop time of the previous period.

limit* number 1 Charging rate limit during the schedule period, in the applicable
chargingRateUnit, for example in Amperes (A) or Watts (W). Accepts at most
one digit fraction (e.g. 8.1).

13.8.1. CompositeProfile class

Property Type Card. Description

start_date_time DateTime 1 Date and time at which the schedule becomes active. All time measurements
within the schedule are relative to this timestamp.

charging_schedule ChargingSche
dule

1 Charging schedule structure defines a list of charging periods.

13.8.2. ResponseType enum

Response to the ChargingProfile request from the MSP to the CPO.

OCPI 2.2-RC1

109



Value Description

NOT_SUPPORTED The ChargingProfiles not supported by this CPO, Charge Point, EVSE etc.

REJECTED ChargingProfile request rejected by the CPO. (Session might not be from a customer of the MSP
that send this request)

ACCEPTED ChargingProfile request accepted by the CPO, request will be forwarded to the EVSE.

UNKNOWN_SESSION The Session in the requested command is not known by this CPO.

13.8.3. ResultType enum

Result of a ChargingProfile request that the EVSE sends via the CPO to the MSP.

Value Description

ACCEPTED ChargingProfile request accepted by the EVSE.

REJECTED ChargingProfile request rejected by the EVSE.

UNKNOWN No Charging Profile(s) were found by the EVSE matching the request.

OCPI 2.2-RC1

110



14. HubClientInfo module

Module Identifier: hubclientinfo

Data owner: Hub

This module provides parties connected to a hub with the connection status of other parties that are connected to a hub that they

can communicate with. So, CPOs know which eMPS and other parties are online and vice versa.

It is like any other OCPI module, but then not between eMSP and CPO, but between eMSP/CPO and Hub.

14.1. Scenarios

This section will describe what the expected behavior is when a party receive information of a ConnectionState change.

14.1.1. Another Party becomes CONNECTED

Party is (back) online. Request can be send again. Every party receiving Client Owned Object from this party should be prepared to

received client owned objects with URLs that contain the party_id and country_code of this party.

14.1.2. Another Party goes OFFLINE

Connection to party is not available: No requests can be send. Do not queue push messages. When the other parties comes back

online, it is their responsibility to do a GET to get back in sync.

14.1.3. Another Party becomes PLANNED

No requests can be send to this new party yet. Might be a good idea to send some notification to an operator to get into contact

with the new party so contracts can be setup. This state may also be used when a Hub has some configuration indicating which

parties have contracts which each other. When a company does not have a connection configured. This state may also be send to

parties.

14.1.4. Another Party becomes SUSPENDED

Like with OFFLINE, no requests should be send to this party, they cannot be delivered.

When for example CDRs still have to be delivered, so there is some unfinished business, parties are advised to get into contact with

the other party in another way the OCPI: Call them, send an e-mail.

14.2. Still alive check.

The hubs needs to determine if a connection is still "alive".

To do this, the Hub should keep track of the time that has passed since the last message was received from a connected party.

When this is longer then 5 minutes (TODO determine the best time for a keep alive) the Hub should send a: GET to the Version

information endpoint. As the Version information endpoint is always required in OCPI, and this endpoint is provided by all parties,

and a GET to the versions endpoint does not have any side effects, this is seen as the best way to do an "still-alive"check.

14.3. Flow and Life-cycle

OCPI 2.2-RC1

111



14.4. Push model

When the Hub creates a new ClientInfo object they push it to the connected parties by calling PUT on the connected party

ClientInfo endpoint with the newly created ClientInfo object.

Any changes to ClientInfo in the Hub system are send to the connected party system by calling, either the PUT or the PATCH on

the connected party ClientInfo endpoint with the updated ClientInfo.

When the Hub invalidates a ClientInfo object (deleting is not possible), the Hub will send the updated ClientInfo object (with the

field: status set to SUSPENDED, by calling, either the PUT or the PATCH on the connected party ClientInfo endpoint with the

updated ClientInfo object.

When the connected party is not sure about the state or existence of a ClientInfo object in the Hub system, the connected party can

call the GET to request to ClientInfo object from the Hub system.

14.5. Pull model

When a connected party is not sure about the state of the list of known connected parties of a Hub, or wants to request the full list

at the start-up of their system, the connected party can call the GET on the Hubs ClientInfo endpoint to receive all ClientInfo

objects. This method is not for operational flow.

14.6. Interfaces

There is both a Hub interface as a connected client (eMSP/CPO etc) interface for ClientInfo. It is advised to use the push direction

from Hub to connected clients during normal operation. The Hub interface is meant to be used when the connected client is not

100% sure the ClientInfo cache is still correct.

14.6.1. Connected client Interface

With this interface the Hub can push the ClientInfo information to a connected client (eMSP/CPO etc) Example endpoint structure:
/ocpi/cpo/2.0/clientinfo/{country_code}/{party_id}

Method Description

GET Retrieve a ClientInfo object as it is stored in the connected clients system.

POST n/a

PUT Push new/updated ClientInfo object to the connect client.

PATCH Notify the connected client of partial updates to a ClientInfo object.

DELETE n/a, Use PUT, ClientInfo objects cannot be removed).

14.6.1.1. GET Method

If the Hub wants to check the status of a ClientInfo object in the connected clients system it might GET the object from the

connected clients system for validation purposes. The Hub is the owner of the objects, so it would be illogical if the connected client

system had a different status or was missing an object.

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requi
red

Description

country_code CiString(2) yes Country code of the requested ClientInfo object.

OCPI 2.2-RC1

112



Parameter Datatype Requi
red

Description

party_id CiString(3) yes Party ID (Provider ID) of the requested ClientInfo object.

Response Data

The response contains the requested object.

Type Card. Description

ClientInfo 1 The requested ClientInfo object.

14.6.1.2. PUT Method

New or updated ClientInfo objects are pushed from the Hub to a connected client.

Request Body

In the put request a the new or updated ClientInfo object is send.

Type Card. Description

ClientInfo 1 New or updated ClientInfo object.

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Required Description

country_code CiString(2) yes Country code of the eMSP
sending this PUT request to
the CPO system.

party_id CiString(3) yes Party ID (Provider ID) of the
eMSP sending this PUT
request to the CPO system.

Example: put a new ClientInfo object

PUT To URL: https://www.server.com/ocpi/cpo/2.0/clientinfo/NL/ALL

{
  "country_code": "NL",
  "party_id": "ALL",
  "role": "CPO",
  "status": "PLANNED",
}

14.6.1.3. PATCH Method

Same as the PUT method, but only the fields/objects that have to be updated have to be present, other fields/objects that are not

specified are considered unchanged.

Example: invalidate a ClientInfo object

OCPI 2.2-RC1

113



PATCH To URL: https://www.server.com/ocpi/cpo/2.0/clientinfo/NL/ALL

{
  "status": "SUSPENDED"
}

14.6.2. Hub Interface

This interface enables a connected party to request the current list of ClientInfo objects, when needed.

Method Description

GET Get the list of known ClientInfo objects, last updated between the {date_from} and {date_to} paginated)

POST n/a

PUT n/a

PATCH n/a

DELETE n/a

14.6.2.1. GET Method

Fetch information about clients connected to a Hub.

Endpoint structure definition:

{locations_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={l

imit}]

Examples:

https://www.server.com/ocpi/cpo/2.2/hubclientinfo/?date_from=2019-01-28T12:00:00&date_to=2019-

01-29T12:00:00

https://ocpi.server.com/2.2/hubclientinfo/?offset=50

https://www.server.com/ocpi/2.2/hubclientinfo/?date_from=2019-01-29T12:00:00&limit=100

https://www.server.com/ocpi/cpo/2.2/hubclientinfo/?offset=50&amp;limit=100

14.6.2.2. Request Parameters

If additional parameters: {date_from} and/or {date_to} are provided, only ClientInfo objects with (last_updated) between the

given date_from and date_to will be returned.

This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Requi
red

Description

date_from DateTime no Only return ClientInfo that have last_updated after this Date/Time.

date_to DateTime no Only return ClientInfo that have last_updated before this Date/Time.

offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

OCPI 2.2-RC1

114



14.6.2.3. Response Data

The endpoint response with list of valid ClientInfo objects, the header will contain the pagination related headers.

Any older information that is not specified in the response is considered as no longer valid. Each object must contain all required

fields. Fields that are not specified may be considered as null values.

Type Card. Description

ClientInfo * List of all (or matching) ClientInfo objects.

14.6.3. Object description

14.7. ClientInfo Object

Property Type Card. Description

party_id CiString(3) 1 CPO or eMSP ID of this party. (following the 15118 ISO standard), as used in
the credentials exchange.

country_code CiString(2) 1 Country code of the country this party is operating in, as used in the credentials
exchange.

role RoleType 1 The role of the connected party.

status ConnectionSt
atusType

1 Status of the connection to the party.

last_updated DateTime 1 Timestamp when this ClientInfo object was last updated.

15. Data types

15.1. RoleType enum

Value Description

CPO Charging Point Operator.

EMPS e-Mobility Service Provider.

NSP Navigation Service Provider, role like an eMSP (probably only interested in Location information)

OTHER Other role

15.2. ConnectionStatusType enum

Value Description

CONNECTED Party is connected.

OFFLINE Party is currently not connected.

PLANNED Connection to this party is planned, but has never been connected.

SUSPENDED Party is now longer active, will never connect anymore.

OCPI 2.2-RC1

115



16. Types

16.1. CiString type

Case Insensitive String. Only printable ASCII allowed.

16.2. DateTime type

All timestamps are formatted as string(25) using the combined date and time format from the ISO 8601 standard. All timestamps

SHALL be in UTC. The absence of the timezone designator implies a UTC timestamp.

Example of how timestamps shall be formatted in OCPI, other formats/patterns are not allowed:

2015-06-29T20:39:09Z
2015-06-29T20:39:09
2016-12-29T17:45:09Z
2016-12-29T17:45:09
2018-01-01T01:08:01Z
2018-01-01T01:08:01

Note: +00:00 is not the same as UTC.

16.3. DisplayText class

Property Type Card. Description

language string(2) 1 Language Code ISO 639-1

text string(512) 1 Text to be displayed to a end user. No markup, html etc. allowed.

Example:

{
  "language": "en",
  "text": "Standard Tariff"
}

16.4. number type

Numbers in OCPI are formatted as JSON numbers. Unless mentioned otherwise, numbers use 4 decimals and a sufficiently large

amount of digits.

16.5. Price class

Property Type Card. Description

excl_vat number 1 Price/Cost excluding VAT.

incl_vat number 1 Price/Cost including VAT.

16.6. string type

Case Sensitive String. Only printable ASCII allowed. All strings in messages and enumerations are case sensitive, unless explicitly

stated otherwise.

OCPI 2.2-RC1

116



16.7. URL type

An URL a string(255) type following the w3.org spec.

OCPI 2.2-RC1

117

http://www.w3.org/Addressing/URL/uri-spec.html


17. Changelog

17.1. Changes between OCPI 2.1.1 and 2.2

Lots of typos fixed and textual improvements.

The following changes to messages/objects etc.

Context (Module / Object) Expected
Impact:
eMSP /
CPO

Expected
Effort:
eMSP /
CPO

Description

CDRs /
CDR Object

Minor /
Minor

Minimal /
Minimal

- Added session_id field, making it easier to match a CDR to a
Session.
- Changed total_cost field from type: number to Price, this
provides the MSP with the total cost including VAT.
- Replaced auth_id field with CdrToken. auth_id alone could not
be used to uniquely identify a Token. By copying the information for
the dynamic Token object, the CDR will always reflect the 'true' status
of Token at the start of the charging session.
- Replaced location field with cdr_location, this also changed
type, from Location to CdrLocation. Reusing the Location
object always caused a lot of confusing, things were not clear. By
creating a deticated object CdrLocation with only the relevant
fields, things should be much clearer.
- Added credit and credit_reference_id fields, to allow for
Credit CDRs to be send.
- Field id changed in length from 36 to 39, to allow for something to
be appended after the original id in case of a Credit CDR.

CDRs /
ChargingPeriod class

Medium /
Medium

Minimal /
Minimal

Added tariff_id field to ChargingPeriod, when the session
switches from one tariff to another, this needs to be known, can be
relevant with Preference based Smart Charging.

ChargingProfiles Major /
Major

Large /
Large

Added new ChargingProfiles module.

Commands /
CancelReservation Object

Minor /
Minor

Minimal /
Minimal

Added CancelReservation object for the cancel reservation
command.

Commands /
CommandType Enum

Minor /
Minor

Minimal /
Minimal

Added CANCEL_RESERVATION value, adding the cancel reservation
command.

Commands /
CommandResponse Object

Minor /
Minor

Minimal /
Minimal

- Added message field, enables the CPO to send a message to the
user when something goes wrong.
- Added timeout field, enables the eMSP to cleanup not responded
outstanding commands.

Commands /
ReserveNow Object

Minor /
Minor

Minimal /
Minimal

Changed location_id and evse_uids from string to CiString,
making them case-insensitive, which had always been the idea.
Lengths changed from 39 to 36, matching changes in the object
definitions.

Commands /
StartSession Object

Minor /
Minor

Minimal /
Minimal

Changed location_id and evse_uids from string to CiString,
making them case-insensitive, which had always been the idea.
Lengths changed from 39 to 36, matching changes in the object
definitions.

Commands /
StopSession Object

Minor /
Minor

Minimal /
Minimal

Changed session_id from string to CiString, making it case-
insensitive, which had always been the idea.

Commands /
UnlockConnector Object

Minor /
Minor

Minimal /
Minimal

- Changed location_id, evse_uids and connector_ids from
string to CiString, making them case-insensitive, which had always
been the idea.
- Length of location_id and evse_uids changed from 39 to 36,
matching changes in the object definitions.

Commands /
CommandResponseType Enum

Minor /
Minor

Minimal /
Minimal

removed TIMEOUT as possible value. This is moved to the new
CommandResult object.

OCPI 2.2-RC1

118



Context (Module / Object) Expected
Impact:
eMSP /
CPO

Expected
Effort:
eMSP /
CPO

Description

Commands /
CommandResult Object

Medium /
Medium

Medium /
Medium

Changed result message from CPO to eMSP from
CommandResponse to CommandResult to make it more clear.

Credentials /
Credentials Object

Minor /
Minor

Minimal /
Minimal

Changed country_code and party_id from string to CiString,
making them case-insensitive, which had always been the idea.
Replaced the business_details, party_id and country_code
field with a roles list. Making it possible to implement different
parties and roles in the same OCPI instance. The fields are now
moved into a new `CredentialsRole class.

HubClientInfo Medium /
Medium

Medium /
Medium

Added new HubClientInfo module.

Locations /
CPO GET Object method

Minor /
Minor

Minimal /
Minimal

- Changed location_id, evse_uids and connector_ids from
string to CiString, making them case-insensitive, which had always
been the idea.
- Length of location_id and evse_uids changed from 39 to 36,
matching changes in the object definitions.

Locations /
CPO GET, PUT & PATCH
methods

Minor /
Minor

Minimal /
Minimal

- Changed country_code, party_id, location_id, evse_uids
and connector_ids from string to CiString, making them case-
insensitive, which had always been the idea.
- Length of location_id and evse_uids changed from 39 to 36,
matching changes in the object definitions.

Locations /
Connector Object

Minor /
Minor

Minimal /
Minimal

- Field id is changed from string to CiString, making it now case-
insensitive, which had always been the idea.
- Added max_electric_power field, some DC Fast Charger have a
lower max power then can be calculated form voltage and
amperage.
- Changed tariff_id field to tariff_ids, and changed
cardinality from ? to *. Making it possible to make provided tariffs for
different Smart Charging Preferences and also for ad hoc payment.
Changed type from string to CiString, matching the change to Tariff.id.

Locations /
EVSE Object

Minor /
Minor

Minimal /
Minimal

- Fields uid and evse_id is changed from string to CiString, making
them case-insensitive, which had always been the idea.
- length of uid changed from 39 to 36, as 36 is enough to store UUID
and GUIDs.

Locations /
Location Object

Minor /
Minor

Minimal /
Minimal

- Field id is changed from string to CiString, making it now case-
insensitive, which had always been the idea.
- length changed from 39 to 36, as 36 is enough to store UUID and
GUIDs.
- Added state field, optional, to allow as much different address
schemes from around the world as possible..
- Changed postal_code field from required to optional, with the
remark that omitting is only allowed when location has no
postal_code.

Locations /
AdditionalGeoLocation class

Minor /
Minor

Minimal /
Minimal

Changed regex for fields: latitude and longitude from fixed 6
decimal places, to more flexible 5 to 7 decimal places.

Locations /
Capability enum

Minor /
Minor

Minimal /
Minimal

added new values for: CHARGING_PREFERENCES_CAPABLE,
DEBIT_CARD_PAYABLE and TOKEN_GROUP_CAPABLE.

Locations /
EnvironmentalImpact class

Minor /
Minor

Minimal /
Minimal

Changed field name from source to category, this was a copy/past
error in an older version of OCPI, as this is not used (much) yet, it is
better for understandability of OCPI for correct the field name.

Locations /
GeoLocation class

Minor /
Minor

Minimal /
Minimal

Changed regex for fields: latitude and longitude from fixed 6
decimal places, to more flexible 5 to 7 decimal places.

Locations /
Hours class

Minor /
Minor

Minimal /
Minimal

removed to option for either: twentyfourseven or regular_hours, now
twentyfourseven is always required and regular_hours is required
when twentyfourseven=false, this is much less confusing.

Sessions /
CPO PUT method

Medium /
Medium

Large /
Large

Added setting Charging Preferences on a session. Proving the CPO
with preferences from the driver, needed for Smart Charging. For this
the following data types are added: ChargingPreferences,
ChargingPreferencesResponse, ProfileType,

OCPI 2.2-RC1

119



Context (Module / Object) Expected
Impact:
eMSP /
CPO

Expected
Effort:
eMSP /
CPO

Description

Sessions /
eMSP GET, PUT, PATCH
methods

Minor /
Minor

Minimal /
Minimal

Changed country_code, party_id and session_id from string
to CiString, making them case-insensitive, which had always been the
idea.

Sessions /
Session Object

Minor /
Minor

Minimal /
Minimal

- Field id is changed from string to CiString, making it now case-
insensitive, which had always been the idea.
- Changed total_cost field from type: number to Price, this
provides the MSP with the total cost including VAT.
- Replaced auth_id with CdrToken class. auth_id alone could not
be used to uniquely identify a Token.
- Replaced location object with location_id, evse_uid and
connector_id. Having the Location Object in the Session was
overkill, only reference is more inline with the rest.

Tokens /
eMSP GET, PUT, PATCH &
DELETE methods

Minor /
Minor

Minimal /
Minimal

Changed country_code, party_id and tariff_id from string to
CiString, making them case-insensitive, which had always been the
idea.

Tariffs /
Tariff Object

Minor /
Minor

Minimal /
Minimal

- Field id is changed from string to CiString, making it now case-
insensitive, which had always been the idea.
- Added optional min_price field, making it possible to set a
minimum price on a Charging Session.
- Added optional max_price field, making it possible to set a
maximum price on a Charging Session.
- Added type field to make it possible to make different tariffs for
different Smart Charging Preferences and also for ad hoc payment.

Tariffs /
PriceComponent class

Minor /
Minor

Minimal /
Minimal

- Added vat field to send the applicable VAT with every tariff
component.

Tariffs /
ReservationRestrictionType enum

Minor /
Minor

Minimal /
Minimal

Added new enum for Reservation restrictions.

Tariffs /
TariffRestrictions class

Minor /
Minor

Minimal /
Minimal

Added optional reservation field, making it possible to define the
tariff of a reservation (and an expired reservation).

Tokens /
CPO GET & PUT methods

Minor /
Minor

Minimal /
Minimal

Changed country_code, party_id and token_uid from string to
CiString, making them case-insensitive, which had always been the
idea.

Tokens /
eMSP POST method

Minor /
Minor

Minimal /
Minimal

Changed token_uid from string to CiString, making it case-
insensitive, which had always been the idea.

Tokens /
Token Object

Minor /
Minor

Minimal /
Minimal

- Fields uid changed from string to CiString, making it now case-
insensitive, which had always been the idea.
- Fields auth_id_ renamed to contract_id, a much more logical
and less confusing name. Also changed from string to CiString,
making it now case-insensitive, which had always been the idea.
- Added group_id field to enable support for OCPP
GroupId/ParentId.
- Added default_profile_type field to enable a default
Preference base Smart Charging ProfileType to be provided for a
user.
- Added energy_contract field to make it possible, if allowed, to
use a drivers energy supplier/contract at a Charge Point.

Tokens /
LocationReferences class

Minor /
Minor

Minimal /
Minimal

- Changed location_id, evse_uids and connector_ids from
string to CiString, making them case-insensitive, which had always
been the idea.
- Length of location_id and evse_uids changed from 39 to 36,
matching changes in the object definitions.

Tokens /
TokenType enum

Minor /
Minor

Minimal /
Minimal

Added value APP_USER. As more and more MSPs are launching
Apps, this becomes more common, so a special category is useful.

Versions /
Endpoint class

Medium /
Medium

Minimal /
Minimal

Field role added, making it possible to have one OCPI version end-
point for both MSP and CPO role, so one OCPI connection when both
CPO and MSP implemented by the same party.

Transport & Format Medium /
Medium

Medium /
Medium

To enable routing of messages through a Hub, new 'OCPI-to-' and
'OCPI-from-' headers are introduced.

OCPI 2.2-RC1

120



Context (Module / Object) Expected
Impact:
eMSP /
CPO

Expected
Effort:
eMSP /
CPO

Description

Transport & Format Minor /
Minor

Minimal /
Minimal

Unique message ID header is now required in every
request/response.
Correlation message ID header in required for any request via a Hub.

OCPI 2.2-RC1

121



OCPI 2.2-RC1

122


	OCPI 2.2: Open Charge Point Interface
	Table of Contents
	1. OCPI
	1.1. OCPI 2.2
	1.1.1. Editorial note
	1.1.2. Changes/New functionality:

	1.2. Introduction and background

	2. Terminology and Definitions
	2.1. Abbreviations
	2.2. Provider and Operator abbreviation
	2.2.1. The Netherlands
	2.2.2. Germany
	2.2.3. Austria
	2.2.4. France

	2.3. Charging topology
	2.4. Variable names
	2.5. Cardinality

	3. Transport and format
	3.1. JSON / HTTP implementation guide
	3.1.1. Security and authentication
	3.1.2. Authorization header
	3.1.3. Pull and Push
	3.1.4. Request format
	3.1.4.1. GET
	3.1.4.2. PUT
	3.1.4.3. PATCH

	3.1.5. Client owned object push
	3.1.5.1. Errors

	3.1.6. Response format
	3.1.6.1. Example: Version information response (list of objects)
	3.1.6.2. Example: Version details response (one object)
	3.1.6.3. Example: Tokens GET Response with one Token object. (CPO end-point) (one object)
	3.1.6.4. Example: Tokens GET Response with list of Token objects. (eMSP end-point) (list of objects)
	3.1.6.5. Example: Response with an error (contains no data field)

	3.1.7. Message Routing Headers
	3.1.7.1. Omitting from address in responses
	3.1.7.2. Broadcast push
	3.1.7.3. Open routing request
	3.1.7.4. Overview of required/optional routing headers for different scenarios


	3.2. Unique message IDs
	3.3. Interface endpoints
	3.4. Offline behaviour

	4. Status codes
	4.1. 1xxx: Success
	4.2. 2xxx: Client errors
	4.3. 3xxx: Server errors
	4.4. 4xxx: Hub errors

	5. Versions module
	5.1. Version information endpoint
	5.1.1. Data
	5.1.2. Version class
	5.1.3. GET
	5.1.3.1. Example


	5.2. Version details endpoint
	5.2.1. Data
	5.2.2. Endpoint class
	5.2.3. InterfaceRole enum
	5.2.4. ModuleID enum
	5.2.5. VersionNumber enum
	5.2.5.1. Custom Modules

	5.2.6. GET
	5.2.6.1. Examples



	6. Credentials module
	6.1. Use cases
	6.1.1. Registration
	6.1.2. Updating to a newer version
	6.1.3. Changing endpoints for the current version
	6.1.4. Updating the credentials and resetting the credentials token
	6.1.5. Errors during registration
	6.1.6. Required endpoints not available

	6.2. Interfaces and endpoints
	6.2.1. GET Method
	6.2.2. POST Method
	6.2.3. PUT Method
	6.2.4. DELETE Method

	6.3. Object description
	6.3.1. Credentials object
	6.3.2. Examples

	6.4. Data types
	6.4.1. CredentialsRole class
	6.4.2. Role enum


	7. Locations module
	7.1. Flow and Lifecycle
	7.2. Interfaces and endpoints
	7.2.1. CPO Interface
	7.2.1.1. GET Method
	7.2.1.2. eMSP Interface
	7.2.1.3. GET Method
	7.2.1.4. PUT Method
	7.2.1.5. PATCH Method


	7.3. Object description
	7.3.1. Location Object
	7.3.1.1. Example

	7.3.2. EVSE Object
	7.3.3. Connector Object

	7.4. Data types
	7.4.1. AdditionalGeoLocation class
	7.4.2. BusinessDetails class
	7.4.3. Capability enum
	7.4.4. ConnectorFormat enum
	7.4.5. ConnectorType enum
	7.4.6. EnergyMix class
	7.4.6.1. Examples

	7.4.7. EnergySource class
	7.4.8. EnergySourceCategory enum
	7.4.9. EnvironmentalImpact class
	7.4.10. EnvironmentalImpactCategory enum
	7.4.11. ExceptionalPeriod class
	7.4.12. Facility enum
	7.4.13. GeoLocation class
	7.4.14. Hours class
	7.4.15. Image class
	7.4.16. ImageCategory enum
	7.4.17. LocationType enum
	7.4.18. ParkingRestriction enum
	7.4.19. PowerType enum
	7.4.20. RegularHours class
	7.4.20.1. Example

	7.4.21. Status enum
	7.4.22. StatusSchedule class


	8. Sessions module
	8.1. Flow and Lifecycle
	8.1.1. Push model
	8.1.2. Pull model
	8.1.3. Set charging preferences

	8.2. Interfaces and endpoints
	8.2.1. CPO Interface
	8.2.1.1. GET Method
	8.2.1.2. PUT Method
	8.2.1.3. eMSP Interface
	8.2.1.4. GET Method
	8.2.1.5. PUT Method
	8.2.1.6. PATCH Method


	8.3. Object description
	8.3.1. Session Object
	8.3.1.1. Examples

	8.3.2. ChargingPreferences Object

	8.4. Data types
	8.4.1. ChargingPreferencesResponse enum
	8.4.2. ProfileType enum
	8.4.3. SessionStatus enum


	9. CDRs module
	9.1. Flow and Lifecycle
	9.1.1. Credit CDRs
	9.1.2. Push model
	9.1.3. Pull model

	9.2. Interfaces and endpoints
	9.2.1. CPO Interface
	9.2.1.1. GET Method

	9.2.2. eMSP Interface
	9.2.2.1. GET Method
	9.2.2.2. POST Method


	9.3. Object description
	9.3.1. CDR Object
	9.3.1.1. Example of a CDR


	9.4. Data types
	9.4.1. AuthMethod enum
	9.4.2. CdrDimension class
	9.4.3. CdrDimensionType enum
	9.4.4. CdrLocation class
	9.4.5. CdrToken class
	9.4.6. ChargingPeriod class


	10. Tariffs module
	10.1. Flow and Lifecycle
	10.1.1. Push model
	10.1.2. Pull model

	10.2. Interfaces and endpoints
	10.2.1. CPO Interface
	10.2.1.1. GET Method

	10.2.2. eMSP Interface
	10.2.2.1. GET Method
	10.2.2.2. PUT Method
	10.2.2.3. PATCH Method
	10.2.2.4. DELETE Method


	10.3. Object description
	10.3.1. Tariff Object
	10.3.1.1. Examples


	10.4. Data types
	10.4.1. DayOfWeek enum
	10.4.2. PriceComponent class
	10.4.2.1. Examples tariff
	10.4.2.2. Example switch to different price:
	10.4.2.3. Example switching to free tariff element:

	10.4.3. ReservationRestrictionType enum
	10.4.4. TariffElement class
	10.4.5. TariffDimensionType enum
	10.4.6. TariffRestrictions class
	10.4.7. TariffType enum


	11. Tokens module
	11.1. Flow and Lifecycle
	11.1.1. Push model
	11.1.2. Pull model
	11.1.3. Real-time authorization

	11.2. Interfaces and endpoints
	11.2.1. CPO Interface
	11.2.1.1. GET Method
	11.2.1.2. PUT Method
	11.2.1.3. PATCH Method

	11.2.2. eMSP Interface
	11.2.2.1. GET Method
	11.2.2.2. POST Method


	11.3. Object description
	11.3.1. AuthorizationInfo Object
	11.3.2. Token Object
	11.3.2.1. Examples


	11.4. Data types
	11.4.1. Allowed enum
	11.4.2. EnergyContract class
	11.4.3. LocationReferences class
	11.4.4. TokenType enum
	11.4.5. WhitelistType enum


	12. Commands module
	12.1. Flow
	12.2. Interfaces and endpoints
	12.2.1. CPO Interface
	12.2.1.1. POST Method
	12.2.1.2. Request Body

	12.2.2. eMSP Interface
	12.2.2.1. POST Method
	12.2.2.2. Request Body


	12.3. Object description
	12.3.1. CancelReservation Object
	12.3.2. CommandResponse Object
	12.3.3. CommandResult Object
	12.3.4. ReserveNow Object
	12.3.5. StartSession Object
	12.3.6. StopSession Object
	12.3.7. UnlockConnector Object

	12.4. Data types
	12.4.1. CommandResponseType enum
	12.4.2. CommandResultType enum
	12.4.3. CommandType enum


	13. ChargingProfiles module
	13.1. Use Cases
	13.2. Flow
	13.3. Interfaces and endpoints
	13.3.1. CPO Interface
	13.3.1.1. GET Method
	13.3.1.2. PUT Method
	13.3.1.3. Request Body
	13.3.1.4. DELETE Method

	13.3.2. eMSP Interface
	13.3.2.1. POST Method
	13.3.2.2. Request Body
	13.3.2.3. Response Body
	13.3.2.4. PUT Method
	13.3.2.5. Request Body
	13.3.2.6. Response Body


	13.4. Object description
	13.4.1. ChargingProfileResponse Object
	13.4.2. CompositeProfileResult Object
	13.4.3. ChargingProfileResult Object
	13.4.4. ClearProfileResult Object
	13.4.5. SetChargingProfile Object

	13.5. Data types
	13.6. ChargingRateUnit enum
	13.7. ChargingSchedule class
	13.8. ChargingSchedulePeriod class
	13.8.1. CompositeProfile class
	13.8.2. ResponseType enum
	13.8.3. ResultType enum


	14. HubClientInfo module
	14.1. Scenarios
	14.1.1. Another Party becomes CONNECTED
	14.1.2. Another Party goes OFFLINE
	14.1.3. Another Party becomes PLANNED
	14.1.4. Another Party becomes SUSPENDED

	14.2. Still alive check.
	14.3. Flow and Life-cycle
	14.4. Push model
	14.5. Pull model
	14.6. Interfaces
	14.6.1. Connected client Interface
	14.6.1.1. GET Method
	14.6.1.2. PUT Method
	14.6.1.3. PATCH Method

	14.6.2. Hub Interface
	14.6.2.1. GET Method
	14.6.2.2. Request Parameters
	14.6.2.3. Response Data

	14.6.3. Object description

	14.7. ClientInfo Object

	15. Data types
	15.1. RoleType enum
	15.2. ConnectionStatusType enum

	16. Types
	16.1. CiString type
	16.2. DateTime type
	16.3. DisplayText class
	16.4. number type
	16.5. Price class
	16.6. string type
	16.7. URL type

	17. Changelog
	17.1. Changes between OCPI 2.1.1 and 2.2


